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Abstract:

The temperature distribution spatial contour of solid oxide electrolysis cells (SOECs) is a
critical indicator for evaluating device performance, energy consumption, and maintenance
safety. Conventional computational fluid dynamics (CFD) simulations, while accurate, suffer
from excessive computational time and poor timeliness, making them unsuitable for real-time
field monitoring. To address this, this paper proposes an improved Transformer neural network
model driven by CFD data for real-time prediction of SOEC internal temperature field spatial
contours. The model integrates a hybrid architecture of CNN and Transformer, where a multi-
coupled CNN extracts operational parameter features, and a positional encoding Transformer
reconstructs the spatial distribution of physical fields. Experimental results show that the model
completes temperature field reconstruction within seconds, reducing computational resource
consumption by over 90% compared to traditional CFD methods. In terms of accuracy, the

mean absolute error (MAE) of temperature field prediction is controlled below 2 K, and the



current density field prediction accuracy exceeds 95%. This approach breaks through the
timeliness bottleneck of conventional simulations, provides an efficient and reliable technical
support for intelligent operation and maintenance of SOEC digital twins and demonstrates
significant engineering value for enhancing the operational stability and intelligent

management of SOEC systems.
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1. Introduction

With the escalating global energy crisis, hydrogen energy, as a quintessential clean energy
carrier, has garnered increasing attentionl!?), Among mainstream hydrogen production
technologies, biomass-based hydrogen production suffers from high costs, while fossil fuel
reforming exhibits limited environmental benefits. In contrast, water electrolysis stands out for
its capability to integrate renewable energy sources (e.g., hydropower and wind power),
offering distinct advantages of low-carbon emission and broad industrial prospects!*-l.

Common electrolysis technologies include alkaline electrolyzers (ALK), proton exchange



membrane electrolyzers (PEM), and solid oxide electrolyzers (SOEC). Unlike ALK and PEM,
which operate below 200 °C, SOECs function at 600-1000 °C, enabling superior energy
efficiency (80%-100%) and accelerated reaction kinetics due to elevated temperatures!6-°l. This
makes SOEC a promising technology for large-scale industrial hydrogen production.

However, the high operating temperature of SOECs necessitates real-time monitoring and
regulation of internal thermal conditions to ensure optimal performance, energy efficiency, and
safety, particularly to prevent localized overheating. Conventional methods, such as manual
thermocouple measurements or discrete sensor placement, only provide partial hotspot data,
failing to capture the full temperature field distribution. Although computational fluid dynamics
(CFD) simulations can model the entire temperature field, they suffer from severe limitations:
the complex internal structure of SOECs demands hours of computation on standard hardware,
rendering them inadequate for real-time applications.

Additionally, the internal current density distribution is a critical metric for residual life
assessment and operational optimization of SOECs. Given that practical SOEC systems
typically consist of dozens of stacked single-cell plates, in-situ monitoring of electrolyte layers
is infeasible, while CFD simulation remains computationally intractable.

Recent advances in CFD-driven neural network models offer a viable solution. By
leveraging trained neural networks, these models can reconstruct 3D temperature and current
density fields by interpolating key nodal data. The predicted fields are then visualized in real-
time as spatial contour maps via point cloud technology on a Unity3D-based digital twin

platform, enabling intelligent operation and maintenance.



Current research on neural network-based temperature field reconstruction has seen
notable progress:

Zheng et al.l'%l proposed a HISM-RCM hybrid framework combining temporal
convolution and a heat input sensing method, achieving 99.76% accuracy in mechanical
machining temperature monitoring.

Chen et al.[''l employed physics-informed neural networks (PINN) with transfer learning
for launch vehicle thermal protection systems, achieving single-digit mean absolute error in
temperature prediction.

Hu et al.l'?! developed a Swin Transformer framework for 3D forging mold temperature
fields, achieving 0.98s prediction time and 0.8658°C average error.

However, these models—including autoencoders and convolutional networks—exhibit
limited performance when applied to the complex, non-linear SOEC physical fields. This study
presents a modified Transformer model tailored for SOECs, as detailed in subsequent sections,
the model uniquely fuses a multi-coupled CNN for feature extraction and positional encoding
for spatial modeling—a design that reduces computational resources by over 95% compared to
traditional CFD simulations and reduced MAE by 98% compared with traditional Gaussian
interpolation.

Notably, this marks the first attempt to predict 3D physical field spatial contours in SOECs
using a data-driven Transformer framework. The model achieves a temperature mean absolute
error (MAE) within 2 K (Kelvin thermodynamic temperature) and a current density prediction

accuracy exceeding 95%, enabling real-time reconstruction of temperature and current density



fields. Such performance highlights its potential for intelligent operation and maintenance of
SOEC digital twins, addressing the critical need for efficient, accurate physical field monitoring

in high-temperature electrolysis systems.

2. Construction Methods of Transformer Prediction Model for SOEC 3D Physical
Fields

2.1 CFD Mechanism Simulation of SOEC

2.1.1 Geometric Model

The Transformer prediction model constructed in this article is driven by CFD data,
therefore CFD mechanism simulation is the first fundamental work of this study. This article
first constructs a model for SOEC, as shown in Figure 1, and based on this, conducts simulation
calculations under different operating conditions, accumulating three-dimensional temperature
and current density field simulation data for subsequent Transformer model calculations and

verification.

Fig.1 CFD Model of SOEC



The constructed SOEC model consists of ten layers of polar plates, each layer containing
an anode connector, anode channel, anode, cathode, cathode channel, and cathode connector,
as shown in Figure 2. The cathode, anode, and electrolyte have thicknesses of 10 pum, 410 pm,
and 10 pm respectively, with their material compositions and key thermophysical properties
specified as follows: the cathode is porous Ni-Y SZ (porosity: 35%) with a thermal conductivity
of 8.7 W/(m-K) and a specific heat capacity of 450 J/(kg-K); the anode is porous LSM-YSZ
(porosity: 35%) characterized by a thermal conductivity of 2.1 W/(m-K) and a specific heat
capacity of 500 J/(kg-K); the electrolyte is dense YSZ (porosity: <1%) with a thermal
conductivity of 2.3 W/(m-K) and a specific heat capacity of 550 J/(kg-K). Each layer of polar
plate is 150mm long and 120mm wide, with 30 channels separated by 29 ribs inside. Air and
fuel gas (a mixture of water vapor and hydrogen) enter and exit the electrolytic cell polar plate

through left and right inlet and outlet ports.
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Fig.2 Diagram of Polar Plate

2.1.2 Boundary Conditions

Four main boundary condition parameters corresponding the inner temperature field
distribution were set to match the actual production scenario, namely electrolysis temperature
(K), electrolysis voltage (V), fuel gas water hydrogen ratio, and inlet air flow rate. The
electrolysis temperature is divided into three levels: 1073 K, 1023 K, and 973 K. The
electrolysis voltage is divided into three levels: 1.2V, 1.3V, and 1.4V per layer. The fuel gas
water hydrogen ratio is divided into three levels: 70%, 80%, and 90%—with the inlet flow rate
remaining consistent across all these levels at 0.00032 kg/s. Under these conditions, the
simulated steam conversion efficiency ranged from 46.9% to 53.3%.The inlet air flow rate is
also divided into three levels: 0.00065kg/s, 0.00055kg/s, and 0.00075kg/s, with a total of 81

different operating conditions.



In the thermal boundary setting of the CFD model in this article, the specific steps are as
follows: the inlet gas on both sides serves as the source boundary of the thermal input, and the
temperature of the inlet gas is directly set; The SOEC wall is treated with insulation to focus on
the heat transfer process inside the battery; The electrode electrolyte interface is set as a thermal
coupling interface without an internal heat source, and the temperature and heat flow on both
sides of the interface remain continuous, ensuring that heat can be transferred between the solid
and the fluid or wall through this interface.

2.1.3 Governing Equations

In the construction process of the SOEC simulation model, for the fuel side and air side
inlet fluids under different boundary conditions, it is assumed that they are ideal gases, with
laminar inlet flow, incompressible characteristics, and conform to the ideal gas equation, while
not crossing through porous media layers. On this basis, the following control equations and
electrochemical equations can be obtained:

1. According to Law of Mass Conservation:

)
a—'[t)+V-(p17)=0 (1)

In formula (1), p represents density, t represents time, V represents divergence, and v
represents velocity (vector). Due to the assumption that the intake fluid is an ideal gas, its
density remains unchanged, and the original equation is simplified as follows:

Vv=20 (2)

2. According to Law of Momentum Conservation:

0 (pv)

= +V-((pv)B)= —V-p+Vi+F (3)



In formula (3), p is the fluid pressure, 7 is the stress tensor, and F is the volumetric
force. The stress tensor 7 can be obtained by the following formula:
— — 2 —
T= u[(Vv + VBT) — 3 w] (4)
u 1is the viscosity coefficient.

3. According to Law of Energy Conservation:

0 (pgCpgl)
% + V(chpgT) =V (AQVT) ®)

In formula (5), p, is the gas density that distinguishes it from substances in porous media,
Cpg 18 the specific heat capacity of the gas, and A, is the thermal conductivity of the gas. The
gas flow patterns in the cathode and anode channels are the same, so the governing equations
are also the same.

4. When SOEC operates in production, water vapor first flows into the cathode, where it
loses electrons to generate hydrogen gas and oxygen ions. Subsequently, hydrogen gas is
collected and oxygen ions flow into the anode for oxidation reaction to generate oxygen gas.

Main reaction:

1
H20=H2 +502 (6)
Cathode reaction:
H20+29_:H2+02_ (7)
Anode reaction:
1
0%~ =2e  + EOZ (8)

2.1.4 Meshing and Model Validation

In the CFD simulation process, the mesh was generated using HyperMesh with structured



hexahedral elements, resulting in a total of 5,061,920 cells. Grid sizing was carefully optimized,
with a minimum element size of 0.18 mm, maximum size of 0.79 mm, and average size of 0.46
mm. The mesh quality was rigorously controlled, featuring a minimum orthogonal quality of
0.996903 and a maximum aspect ratio of 118.195 (primarily in non-critical regions). Grid
independence was systematically verified through simulations on progressively refined meshes,
ensuring that key performance metrics varied by less than 3% across mesh densities.

Prior to conducting CFD simulations under different operating conditions, the SOEC
mechanism model used herein was validated against experimental data from reference [13].
Following the experimental parameters, the cell structure and operating conditions were strictly
replicated: cathode (Ni-YSZ), anode (LSM-YSZ), and electrolyte (YSZ) thicknesses of 15 um,
15 um, and 100 pm, respectively; operating conditions were set to 1023 K, 100 kPa, a fuel gas
water-hydrogen ratio of 80%, with cathode and anode air molar flow rates of 36 mol/h and 30
mol/h. All geometric (electrode/electrolyte thicknesses) and operating parameters (temperature,
pressure, gas flow rate, etc.) in the simulation matched those of the experiment. The verification

results are shown in Figure 3.
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Fig.3 Comparison of CFD and Experimental Results

As is shown in Figure 3, the maximum error between the simulation results and the
experimental results of the electrolysis voltage when the current density is 9000A/m? is 14.04%.
Discrepancies between simulation and experimental data mainly stem from the following
factors: simulations assume electrodes as homogeneous porous media (uniform porosity and
ideal three-phase boundary distribution), whereas actual electrodes exhibit inevitable
microstructural inhomogeneity (such as local porosity fluctuations and varying diffusion path
tortuosity), which significantly impacts voltage at high current densities; reaction kinetic
parameters in simulations rely mostly on literature empirical values, while experimental
electrodes may have different catalytic activity due to preparation process variations (sintering
temperature, active component content), leading to polarization voltage deviations; simulations
neglect contact resistance between current collectors and electrodes as well as electrode-

electrolyte interface contact loss, which are key sources of voltage deviation at low current



densities; in experiments, cathode inlet water vapor partial pressure may be lower than the set
value due to pipeline condensation or humidity control errors, affecting cell voltage via the
Nernst equation.

Generally speaking, the simulation results have good consistency with the experimental
structure within the low current density range of non extreme operating conditions. Therefore,

this article will continue to conduct mechanism simulations based on this foundation.
2.2 Construction of Modified Transformer AI-CFD Model

The AI-CFD (Artificial Intelligence-Computational Fluid Dynamics) model proposed in
this study deeply integrates the encoder-decoder architecture of Transformer with the robust
feature extraction capability of CNN. Innovatively, CNN is applied to the feature embedding
stage of input data, enabling efficient extraction of local spatial-temporal features through
multi-layer 3D convolution operations. The model leverages the weight allocation mechanism
of convolutional layers to emphasize positional information, ensuring that geometric
dependencies within the SOEC structure are captured. Before feeding data into the Transformer
encoder, a 1D convolutional layer is strategically introduced to reduce data dimensionality
while preserving critical information via a skip connection mechanism. This design effectively
mitigates information loss during feature extraction, maintaining the integrity of physical field
characteristics.

Preprocessed data flows through the Transformer architecture, undergoing hierarchical
feature abstraction and prediction logic deduction via multi-head attention in both encoder and

decoder modules—enabling the model to learn complex nonlinear relationships between



operational parameters and physical field distributions. The final output is a predicted scalar
(e.g., fluid temperature, current density) for each spatial grid point, enabling full-field
reconstruction. As shown in Figure 4, the architecture synergistically integrates CNN's local
feature extraction with Transformer's global dependency modeling, tailored for high-precision

prediction of SOEC 3D physical fields.
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2.3 Innovation of Modified Transformer AI-CFD Model

In the AI-CFD model's network architecture, the Convolutional Block (Fig. 5) serves as a

key local processing unit, meticulously composed of cascaded 3D and 1D convolutional layers.



The 3D layer first extracts spatial-channel local features from the four input operating parameter
tensors via 3D convolution, effectively capturing inter-parameter coupling and spatial
distributions. With the output of the 3D convolution, the subsequent 1D layer then performs
sequence-wise convolution with adaptive weight allocation to encode positional information,
thereby enhancing temporal dependence and spatial localization in feature representations. This
two-layer design ingeniously balances local feature mining and positional encoding, forming a

robust foundation for subsequent processing.
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Fig.5 Diagram of Spatial Convolutional Block in CFD-AI Model
For the input of the AI-CFD model, assuming the input operating parameters (electrolysis
temperature (K), electrolysis voltage (V), fuel gas water hydrogen ratio, and inlet air flow rate)
are P, the distribution of each operating parameter on the three-dimensional spatial grid

naturally forms a cube:



Py € RP*XHXW | =12,3,4 9
In the context of the model, Py [d,h,w] denotes the value of the A-th operating condition
parameter at the spatial coordinates (d,/1,w). Here, the dimensions D (Depth), H (Height),
and W (Width) are all set to 10, such that each parameter corresponds to a 10x10x10 matrix.
In three-dimensional space, the normalized coordinates ( %,y,Z) of each grid point
further compose three coordinate cubic tensors, as shown in Formula (10); the normalization
range is that (x,y,2) €[—1,1] and if X is taken as an example (the same applies to y and Z), the
relationship with the real coordinate (x,y,z) is as shown in Formula (11):
X € RDXHXW 5, ¢ RDXHXW 5 g RDXHXW (10)

v 2x — (xmax + xmin) (11)

Xmax — Xmin

When inputting into the Spatial convolutional layer, 3D convolution is first applied to
capture inter-parameter coupling and spatial distributions. During this process, the dimension
of the input tensor X is as specified in Formula (12), while the dimension of the convolution
kernel tensor K is detailed in Formula (13). The calculation formula for the output tensor of the
3D convolution, along with its output dimension and size formulas, are systematically shown

in Formulas (14), (15), and (16), providing a comprehensive mathematical description.

X € RCnXDinXH gy, XWin, (12)
K € REpXKuXKwXCinXCoyr (13)
Kp—1 Kpy—1 KW_1 Cin_1
Yedhw= zk 0 Zk 0 Zk 0 ZC oXcin,d+kd.h+kh,W+kw' K ykntecime T De (14)
a= h= w— in—
Y € RcoutXDoutXHoutxwout (15)

D, + 2 X padding — Kp
stride

Dowt = Hout = Wour = [ +1 (16)



In the AI-CFD model, the input channel dimension is set as C;,=4, with spatial
dimensions D;,, = H;, = W, = 100. The 3D convolution kernel dimensions are Kp = Ky =
Ky = 3, and the output channel dimension Cy,, is a learnable parameter. The value Y, 45\
denotes the element of the overall output tensor at channel ¢ and spatial location (d,h,w). In
practical experiments, the size of the local output tensor also depends on the batchsize. The
term Ky k, k..c.c T€presents the weight of the convolution kernel at spatial position (kg,kp,ky,
), input channelc;,,, and output channel ¢, while b, denotes the bias term for output channel c.

After completing the 3D convolution operation, the model proceeds to 1D convolution
processing. Unlike the joint operation of 3D convolution in spatial and channel dimensions, 1D
convolution independently performs feature transformation at each spatial position (d,h,w).
Specifically, all channel values at positions (d,h,w) in the output tensor are only obtained by
weighting and summing the channel dimension vectors at the corresponding positions in the
input tensor using convolution kernels. The convolution kernel parameters are not shared in the
spatial dimension and do not undergo sliding operations. This computational property allows
1D convolution to be viewed as performing independent linear transformations on the channel
vectors at each spatial position, thereby fully parallelizing the computation of all spatial
positions. At this point, the convolution kernel tensor parameters and output tensor calculation
method of 1D convolution are shown in formulas (17) and (18), the input channel dimension is
set as C;,,=4:

K € RIXI1X1XCinXCou (17)

Conm1
Yeanw = Xc,.dhw * K0,00,c,.c T be (18)

in



Following the output of the Spatial convolution layer, the data is processed through a
specially designed Channels Merge convolution layer with the tensor dimension of Cy,,,
X 100 X 100 X 100 and its main function is to accurately adjust the feature dimension,
providing adaptive support for subsequent skip connection operations. This design effectively
enhances the stability of the model in deep network training and significantly improves its
feature expression ability.

The multi CNN architecture composed of Spatial convolutional layer and Channels Merge
convolutional layer assumes the feature embedding function of Transformer network in this
model. This design is a unique innovation proposed in this article for the SOEC three-
dimensional physical field distribution prediction task, which is significantly different from the

traditional Transformer network architecture.

3. Experiment and Discussion of AI-CFD Prediction Model for SOEC 3D

Temperature and Current Density Fields

3.1 Related Hyperparameters Settings Before Experiment

This chapter will evaluate the performance of the improved Transformer AT CFD model
through experiments, mainly including predicting and reconstructing the distribution of the
internal temperature field and current density field of SOEC. Before conducting the
experiments, the relevant hyperparameters of the constructed improved Transformer-AI-CFD
model were first set, including:

1.The number of Spatial convolutional layers was set to N=2, with the convolution kernel

using padding=1 and stride=1;



2.The number of layers in both the Transformer encoder and decoder structures was set to
N=2, the overall network learning rate was set to 0.01, the number of attention heads was 4,
and the number of hidden layers was 64.

All experimental data were derived from Ansys Fluent simulation data, and all
experiments were conducted on the following hardware specifications:RAM (Random Access

Memory): 48 GB; CPU(Central Processing Unit): Intel(R) Core(TM) i7-10700 CPU@2.90GHz;

GPU(Graphical Processing Unit): NVIDIA RTX 4060 (8GB); Storage: 2.05 TB; System

Version: Windows 10.
3.2 Criterion Under Different Test Conditions

To evaluate the Transformer model's prediction accuracy, this study employs two
quantitative metrics:Root Mean Squared Error (MSE) and Mean Absolute Error (MAE),

defined in Formulas (19) and (20), respectively.

1" .
RMSE=\/£Zi1(yi—yi)2 (19)

1" .
MAE==>" |y—3i (20)
n i=1

Among it, n denotes the sample size, and y; — y; represents the deviation between the
true value and predicted value of sample i. MSE quantifies the square root of the average
squared error, where larger deviations are quadratically amplified—making it sensitive to
outliers. This characteristic makes RMSE particularly suitable for evaluating energy-related
errors in SOEC, where rare but severe thermal anomalies must be detected.

In contrast to RMSE, MAE calculates the average absolute deviation, reducing the

influence of outliers. This metric provides an intuitive measure of typical prediction errors,



ideal for quantifying temperature discrepancies in practical applications. For instance, a MAE
of 2 K in SOEC temperature fields indicates that predicted values typically deviate by 2 K from
true values, a critical threshold for operational safety.

The choice of these metrics balances precision and robustness: RMSE emphasizes overall
prediction fidelity, while MAE ensures reliability in routine operations. As shown in subsequent
experiments, the model achieves an RMSE and an MAE both within 2 K in the reconstruction
of temperature field spatial contours of SOEC, demonstrating its suitability for both rigorous

error analysis and practical field monitoring.
3.3 Experiment Steps

During the experimental phase, the research team inputted dozens of sets of SOEC CFD
simulation data under different boundary conditions into the neural network. Given that a single
set of simulation data contains millions of three-dimensional grid points, in order to balance
computational efficiency and model generalization ability, the research team adopted a three-
dimensional spatial block partitioning strategy. Specifically, the overall three-dimensional
computational domain of each set of simulation data is discretized into hundreds of spatially
adjacent and non overlapping sub blocks, with each sub block retaining the complete physical
parameter tensor structure. Subsequently, a random sampling method was used to
independently extract the training set and validation set from all blocks, ensuring that each
operating condition has statistical representativeness in the dataset distribution.

During the model training process, the research team used a learning rate optimization

strategy system to explore the impact of hyperparameters on model convergence. Four sets of



comparative experiments were specifically set up, with learning rates of 0.05, 0.01, 0.005, and
0.001, respectively, while the remaining training parameters remained strictly consistent. The
optimization process adopts the Adam adaptive optimization algorithm, with a batch size set to
16 and a training round limit of 300. At the same time, the early stop mechanism is enabled to
avoid overfitting after 20 epochs without validation loss improvement. The loss function uses
mean square error (MSE) as the evaluation metric. The loss curves of the training set and
validation set are shown in Figures 6 and 7, and the trend of the curves reflects the significant
impact of different learning rates on the convergence speed and generalization performance of
the model. After analyzing the dynamic characteristics of the loss function, for the sake of
saving computing power, the optimal learning rate is ultimately determined as 0.05, laying the
foundation for subsequent physical field prediction experiments.

In the process of reconstructing and predicting the physical field spatial contour map of
SOEC, a diagonal hierarchical prediction path is followed from the inside out, starting from the
spatial geometric center and expanding outward layer by layer along the diagonal direction of
the octahedral structure (such as the £+ x + y+ z combination direction). Specifically, each
predicted path corresponds to an octahedral surface defined by "equal sum of absolute
coordinate values" (such as the k-th layer satisfying |x| + |y| + |z| = k). Starting from the
core region (vertices (1,0,0), (0,1,0), etc. when k=1), the predicted path sequentially traverses
the grid points in each diagonal direction according to the hexagram limit. After completing
each layer, it expands outward at equal steps to the next layer (such as k — k+1), forming a

spiral prediction trajectory similar to "octahedral nesting". This path extends symmetrically and



uniformly through layers, ensuring that the physical field spatial contour map is gradually
reconstructed from the core area to the boundary area in three-dimensional space, covering both
the main direction of the xyz coordinate axis and the feature distribution in the diagonal
direction, thereby improving the spatial consistency and detail integrity of the prediction results.
Upon completion of the prediction process, the results are transmitted to a Unity3D-based
SOEC visualization system. Leveraging point cloud technology, this system enables real-time
rendering of physical field spatial contour maps, dynamically visualizing temperature, voltage,
and other scalar distributions in three-dimensional space. The combination of the hierarchical
prediction path and advanced visualization framework provides an intuitive and accurate
representation of complex multiphysics field distributions within the SOEC, facilitating in-

depth analysis of electrochemical reaction mechanisms and structural optimization.
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3.4 Experiment Results Under Different Conditions

To evaluate the generalization performance of the model in predicting temperature and
current density distributions, this paper first employed k-fold cross validation (k=5) on the
entire CFD dataset, which consists of 80 independent simulation cases covering both traditional
and extreme boundary conditions. For temperature field prediction, the dataset is randomly
divided into 5 mutually exclusive subsets. In each validation iteration, one subset is designated
as the test set, while the remaining four subsets are combined together to form the training set.
The training prediction process is repeated 5 times to ensure that each case is accurately
included in the temperature field prediction test once.

The cross validation results of temperature field prediction show that the average mean
absolute error (MAE) of 5 iterations is 1.05, and the root mean square error (RMSE) is 1.32.
The iterative error fluctuations of MAE and RMSE are within + 0.3 and + 0.2, respectively.
These results indicate that the model maintains stable prediction accuracy for temperature fields
in different test subsets - all of which are independent CFD cases that do not participate in

training - confirming that data overlap or concentrated boundary cases do not cause



performance distortion.

For the current density field prediction, the same k-fold cross validation framework (k=5)
was applied to the CFD dataset of 80 cases to ensure consistency between data partitioning and
validation logic and temperature field evaluation. The results showed that the average MAE of
5 iterations was 24.5, and the average RMSE was 26.8. The error fluctuations of MAE and
RMSE are within £ 3.0 and + 3.5, respectively. This stability indicates that the predictive
performance of the model for current density fields is reliable on different test subsets.

In order to further visualize the model's ability to predict these two domains, three
additional test cases (including two non generalized extreme operating conditions) were
manually selected. The performance of the model under these conditions was evaluated using
MAE and RMSE with temperature and current density fields, clearly demonstrating its behavior
under special circumstances. The test conditions are shown in Table 1, temperature prediction
spatial contour maps of Condition 1, Condition 2, and Condition 3 are shown in Figure 8§ to 10
and current density prediction spatial contour maps of such conditions are shown in Figure 11
to 13, respectively.

Table.1 Testing conditions

Condition Electrolysis Electrolysis Ratio of Inlet Air
Number Temperature/K Voltage/V H,O0/H,/% Mass Flow/kg/s
Condition 1 1023 13 90 0.00065
Condition 2 973 12 70 0.00065
Condition 3 1073 14 80 0.00075




(1) Temperature prediction spatial contour maps
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(a) SOEC 3D temperature prediction spatial contour map
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(b) SOEC 3D temperature prediction error spatial contour map

Fig.8 Diagrammatic sketch of temperature prediction for condition 1
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(a) SOEC 3D temperature prediction spatial contour map
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(b)  SOEC 3D temperature prediction error spatial contour map

Fig.9 Diagrammatic sketch of temperature prediction for condition 2
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(b) SOEC 3D temperature prediction error spatial contour map

Fig.10 Diagrammatic sketch of temperature prediction for condition 3
As to condition 1, the RMSE of condition 1 is 0.41, the MAE is 0.24, and the absolute
temperature error at the maximum point is 0.71 K. It is worth mentioning that condition 1 is a
training condition in the training set, while conditions 2 and 3 are generalization conditions that
are not in the training set. As to condition 2, the RMSE is 1.52, the MAE is 1.35, and the
absolute temperature error at the maximum point is 3.75 K.As to condition 3, the RMSE is 1.77,

the MAE is 1.68, and the absolute error at the maximum point is 25.60 K. The error spatial
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contour map reveals that larger errors tend to concentrate in the inlet and outlet flow channels,
whereas the temperature prediction of the SOEC's internal electrolyte layer exhibits higher
accuracy. This discrepancy arises from the distinct heat transfer characteristics of the two
regions: the internal electrolyte layer operates in a relatively stable thermal environment
dominated by conduction—an inherently simpler heat transfer mechanism that allows for more
precise predictions. In contrast, the inlet and outlet flow channels involve more complex heat
transfer processes , which introduces greater challenges to accurate prediction and thus results

in higher errors.

(1) Current density prediction spatial contour maps
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(a) SOEC 3D current density prediction spatial contour map
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(b) SOEC 3D temperature prediction error spatial contour map

Fig.11 Diagrammatic sketch of current density prediction for condition 1

When the current density is predicted, due to the complex electrolyte layer structure in
SOEC, the current density distribution fluctuates greatly, so the corresponding block division
and adjustment must be carried out according to the internal geometry structure, and finally a
good prediction result is achieved. For condition 1, the MAE is 25.31, the RMSE is 28.65 and

the maximum error value of current density prediction is 9.13%.
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(a) SOEC 3D current density prediction spatial contour map
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(b) SOEC 3D temperature prediction error spatial contour map

Fig.12 Diagrammatic sketch of current density prediction for condition 2
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(a) SOEC 3D current density prediction spatial contour map
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(b) SOEC 3D temperature prediction error spatial contour map

Fig.13 Diagrammatic sketch of current density prediction for condition 3

For condition 2, the MAE is 15.86, the RMSE is 18.23 and the maximum error is 6.41%
while for condition 3, the MAE is 39.67, the RMSE is 42.19 and the maximum error is 8.94%,
both of which have good prediction accuracy. The overall evaluation indicators for predicting

the temperature field and current density field under three operating conditions are shown in

Table 2:
Table.2 Overall evaluation indicators
Condition MAE RMSE MAE RMSE
Number (Temperature) | (Temperature) | (Current Density) | (Current Density)
Condition 1 0.24 0.41 25.31 28.65
Condition 2 1.35 1.52 15.86 18.23
Condition 3 1.68 1.77 39.67 42.19




Based on the analysis of the prediction results, it can be seen that due to the small
temperature difference between the upper and lower limits of the internal temperature field of
SOEC, the overall prediction error of the Transformer model is also small. However, the current
density field inside the SOEC not only shows a significant difference between upper and lower
limits but also large distribution fluctuations, resulting in relatively larger prediction errors.
This is mainly because current density distribution is highly sensitive to various parameters—
even minor changes in these parameters can cause it to fluctuate drastically, thereby amplifying

simulation errors. Nevertheless, the overall prediction accuracy is still relatively good.
3.5 Discussion

3.5.1 Ablation Experiments

After verifying the accuracy of the modified Transformer AI-CFD model constructed in
this paper, ablation experiments were further conducted to validate the effectiveness of the
CNN-based feature extraction Spatial Convolution layer in the model architecture. Ablation
experiments were performed with the number of layers set to 0, 1, 2, and 3, respectively. The
predicted physical field was the current density distribution under Condition 1, and the
aggregated results of evaluation metrics are shown in Figure 14. As shown in the figure, when
the number of Spatial Convolution layers is 0 or 1, both the Root Mean Squared Error (RMSE)
and Mean Absolute Error (MAE) are relatively large, indicating poor prediction performance
of the model. In contrast, when the number of layers is 2 or 3, the prediction performance is
significantly improved, which fully demonstrates the critical role of the Spatial Convolution

layer in the modified Transformer model proposed in this study. The number of Spatial



Convolution layers was ultimately set to 2 for the following reasons: although both
configurations with 2 and 3 layers exhibit good prediction performance, increasing the layer
count to 3 introduces excessive convolutional layers. This not only consumes more
computational resources but also raises the risk of overfitting. Moreover, the performance
improvement achieved by 3 layers is marginal compared to that of 2 layers. Therefore, a
configuration with 2 Spatial Convolution layers was selected as the optimal solution to balance

model efficiency and prediction accuracy.

Comparison Under Different Spatial Convolution Paths

m= ruse [90

Fig.14 Ablation Experiments on Spatial Convolution
Subsequently, ablation experiments were conducted on the prediction paths of the model
during three-dimensional physical field reconstruction. First, an axis-aligned hierarchical
expansion path was used to systematically traverse the spatial grid points. The axis-aligned
hierarchical expansion path starts from the spatial geometric center and extends outward layer
by layer in a cubic nesting pattern. Each layer corresponds to the surface of an axis-aligned

cube, with its coordinate extension ranges in the three coordinate axis directions exhibiting



symmetric distribution characteristics: in the x-axis direction, extending 1 times the unit step
size Ax from the central coordinate cx to both sides; in the y-axis direction, extending | times
the unit step size Ay from the central coordinate cy to both sides; in the z-axis direction,
extending | times the unit step size Az from the central coordinate cz to both sides. The
traversal order follows a three-axis round-trip closed-loop pattern: forming a closed path along
the positive — negative x-axis, positive — negative y-axis, and positive — negative z-axis
directions. This path ensures that all grid points on the surface of each layer's cube are fully
visited, with the maximum absolute coordinate value increasing linearly with the number of
layers (max(|x|,|y|,|z|)=1- A). Through layer-by-layer expansion (1=0,1,2,...), the path
gradually covers the entire space from a single central point. This strategy separates the
traversal order of the coordinate axes, reduces the complexity of three-dimensional sampling,
and ensures isotropic feature coverage.

Next, a diagonal hierarchical expansion path (octahedral structure) was adopted, with the
spatial origin as the center, and layer-by-layer expansion was performed based on the octahedral
surface equation |x| + |y| + |z| = k, where k is the number of layers (k=0,1,2,...). The core
mechanism of this path is to achieve systematic coverage of the diagonal directions in three-
dimensional space through equidistant increments of the sum of coordinate absolute values.
Specifically, the k-th layer includes all grid points satisfying |x| + |y| + |z| = k, forming an
octahedral surface centered at the origin. The inner layer (k=1) corresponds to the vertices of
the octahedron, such as (1,0,0), (0,1,0), etc.; as k increases, the outer layers gradually include

more points in diagonal directions (such as (2,0,0), (1,1,0) when k=2), forming an "octahedral



nesting" structure. The traversal order follows the principle of octant priority, sequentially
visiting the eight octants of the octahedron, with vertices and edges traversed in diagonal
directions within each layer. The mathematical logic of this path ensures spatial symmetry and
balanced sampling of diagonal features, making it suitable for capturing anisotropic
distributions in physical fields (such as multi-directional diffusion processes in SOEC).
Through layer-by-layer expansion, the path gradually covers the entire space from the core
vertices, and the linear growth characteristic of the sum of coordinate absolute values (k—>k+1)
ensures the hierarchical and complete feature extraction.

Finally, a spiral hierarchical expansion path was adopted, with the spatial origin as the
center, achieving spiral layer-by-layer expansion through polar or spherical coordinate systems.
In the cylindrical coordinate system, the path forms multiple cylindrical shells along the
increasing radius r. Each layer has a fixed radius rj, with the angle 8 continuously varying
from 0 to 27, and the Z-coordinate can remain fixed (planar spiral) or rise synchronously in a
spiral (3D spiral). In the spherical coordinate system, the path forms spherical shells with
increasing radius r, and each layer traverses the polar angle 6 € [0,7] and azimuthal angle ¢
€ [0,r] to achieve full coverage of the spherical shell surface. The core mechanism of this path
is to form a spiral trajectory through the equidistant expansion of the radius r(r{ —r,—...)
and continuous angular sampling. For example, starting from the initial point (r1,0,0), after
completing the O-traversal along the circumference, the radius increases to ', and the traversal
is repeated, forming a "spiral nesting" structure. This strategy effectively reduces the

complexity of 3D spatial sampling by separating the traversal order of radial and angular



directions, making it suitable for predicting physical fields with cylindrical or spherical
symmetry (such as temperature distribution in pipe flows or concentration fields in spherical
reactors). The continuity and isotropic characteristics of spiral expansion ensure that the model
uniformly captures spatial details, enhancing the spatial smoothness and physical rationality of
prediction results. The overall results are shown in Figure 15 and therefore, the diagonal

hierarchical expansion path is chosen as the optimal solution to achieve the best prediction

accuracy.
Comparison of Hierarchical Prediction Paths
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Fig.15 Ablation Experiments on Hierarchical Prediction Paths
3.5.2 Comparative Experiments
After conducting ablation experiments on the Spatial Convolution layer, this paper also
conducted three precision comparison experiments between the constructed modified
Transformer AI-CFD model and the traditional Gaussian interpolation prediction method, with

the aim of reconstructing the temperature field; At the same time, three hardware utilization



comparison experiments were conducted with traditional CFD simulation methods, and the

results are shown in Tables 3 and 4:

Table.3 Comparison Results of Accuracy Experiment

Application method
Criterion
Modified Transformer Gaussian interpolation
Average Minimum @ Maximum | Average Minimum = Maximum
RMSE
1.37 0.41 1.77 72.9 65.2 82.6
Average Minimum @ Maximum | Average Minimum @ Maximum
MAE
1.09 0.24 1.68 66.53 60.84 73.12
Table.4 Comparison Results of Hardware Utilization Experiment
Application method
Criterion Modified Transformer CFD Simulation
Average = Minimum Maximum | Average  Minimum Maximum
Time 3min28s 2min05s 4min39s 3h55min | 3h42min | 4h28min
CPU 11% 11% 12% 15% 14% 17%
GPU 1% 0 1% 0 0 1%




RAM 32% 31% 32% 56% 55% 56%

From above, it can be seen that the modified Transformer AI-CFD model developed in
this study demonstrates superior accuracy compared to traditional interpolation algorithms and
significantly enhanced timeliness relative to conventional CFD simulation algorithms. This
model not only reduces computational resource consumption substantially but also exhibits

strong application potential in scenarios requiring efficient and precise physical field prediction.

4. Conclusion

In summary, this article constructed a neural network model based on Transformer, which
can reconstruct the temperature and current density fields and predict the spatial contour map
for the three-dimensional temperature and current density distribution inside SOEC. The global
max error rate is controlled below 9% and the global average error is controlled below 5%. And
the prediction time is controlled at the level of minutes and seconds, effectively solving the
problem of time-consuming of CFD simulation methods in the past. By combining CFD
simulation with neural network intelligent models, intelligent operation and maintenance
monitoring of SOEC can be successfully achieved. In the future, further training of neural
network models can be conducted on the distribution of other physical fields such as water

vapor content to achieve multi-objective optimization.
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Highlights

® Proposes an improved CNN-Transformer hybrid model for real-time prediction of SOEC
internal temperature field spatial contours, addressing the timeliness bottleneck of
conventional CFD simulations.

® Achieves temperature field reconstruction in seconds, reducing computational resource
consumption by over 90% compared to traditional CFD simulations and ensures high
prediction accuracy: temperature field MAE < 2 K, overall current density field prediction
accuracy > 95%.

® Breaks through the timeliness bottleneck of conventional simulations, enabling technical
support for intelligent operation and maintenance of SOEC digital twins, demonstrating
significant engineering value for enhancing operational stability and intelligent
management of SOEC systems.
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