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A B S T R A C T

Fluid Catalytic Cracking Unit (FCCU) is a critical processing technology in the oil refining industry, playing
a vital role in energy efficiency and environmental protection. However, FCCU often encounters various
abnormal operating conditions, leading to safety hazards, downtime, and reduced production efficiency. Early
warning of these abnormal conditions is crucial but challenging due to high noise, strong hysteresis, and class
imbalance problems. To tackle these challenges, a novel and universal attention-based framework called AEW-
AOC (Attention-based Early Warning for Abnormal Operating Conditions) is specifically designed for FCCU
applications. The proposed AEW-AOC framework incorporates three key components: (1) a Self-Correlation
Denoiser (SCD) module is proposed to exploit spatiotemporal data correlation to effectively reduce noise;
(2) a Convolutional Long Short-Term Memory (Conv-LSTM) module is employed to address the issue of
strong hysteresis by capturing temporal variation features of process parameters; (3) an Anomaly Pattern
Attention (APA) module is proposed to enhance the distinguishability of abnormal operating conditions based
on clustering results from historical abnormal instances. Extensive experiments demonstrate the effectiveness
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and superiority of the proposed AEW-AOC framework, particularly in practical applications. Specifically, the
AEW-AOC framework obtains an impressive 𝑓𝛽 score of 91.00% on LIC201, 90.45% on LIC202, and 90.64%
on LIC801. The proposed AEW-AOC framework shows great potential in enhancing safety, reducing downtime,
optimizing efficiency, promoting sustainability, and expanding its applicability beyond FCCU. Its proactive and
versatile nature makes it a valuable tool for improving industrial processes and driving advancements in the
field of abnormal operating condition detection and prevention.
1. Introduction

As one of the most important methods of heavy oil processing,
FCC converts heavy petroleum fractions into lighter products such as
gasoline and diesel, increasing the efficiency and economic value of
petroleum resources [1,2]. However, the ultra-large FCCU operating
under high temperatures and high pressure, e.g., reaction regeneration
system, will use or produce massive toxic and hazardous, as well as
flammable and explosive dangerous chemicals during the operating
process. If FCCU fails, it may cause incalculable safety and environmen-
tal accidents, and lead to a great loss of life and property [3]. Therefore,
early warning of abnormal conditions under the real-time monitoring
of FCCU is able to guide the staff to intervene in advance, which is
an essential guarantee for safe production [4]. In the actual industrial
scenario, the early warning of AOC for FCCU is defined as giving a
warning in advance when the operating parameters deviate but do not
reach the alarm threshold [5]. In the early warning of AOC, two aspects
are worth noting, i.e., eliminating missing alarms (𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠) and
reducing false alarms (𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠). The former may cause operators
to miss the opportunity to intervene in advance and lead to serious
safety accidents. The latter will cause operators to have a crisis of trust
in the alarm system and further cause potential safety hazards [6].

With the explosive development of Industry 4.0, more and more
Artificial Intelligence (AI) methods are applied to industrial scenar-
ios, among which the intelligent early warning of AOC for FCCU is
a classic application [7]. During the past few years, the intelligent
early warning methods of AOC used in chemical processes are mostly
based on expert knowledge or mathematical models. Among them,
the expert knowledge-based methods [8] generally construct a rule
system according to the operating principle of chemical plants and
historical operating conditions data. Then, whether AOC will occur can
be predicted by the value and change rule of process parameters. These
methods rely too much on human experience and are prone to miss
alarms. Another mathematical model-based methods [9] pre-process
(e.g., Kalman filter) the process parameters to extract the sequence
features with strong regularity, and then construct the differential equa-
tion model to calculate the changing trend of the process parameters.
Restricted by the complexity of methods, the mathematical model-
based methods can only be applied in industrial scenarios with few
process parameters, and their performance is poor.

Recently, as the development of automation control level and man-
agement system in the FCC production process continues to progress,
the recorded data and operating condition parameters of FCCU can
be collected in real-time [10]. These massive process data which es-
sentially reflect the performance of the production system lay the
foundation for the application of data-driven methods in FCCU. The
Deep Learning (DL) methods, as the popular data-driven methods, can
do depth presentation for complex and nonlinear operating parame-
ters by the powerful feature extraction ability [11]. Most existing DL
methods [12,13] solve the early warning of AOC for FCCU through
two stages: (1) predict the state values of key points in the future
according to the historical operating condition data, (2) judge whether
these predicted state values are in the abnormal range. These two-stage
DL methods will generally cause the transmission and deterioration of
2

prediction error, i.e., even small errors in the first stage will directly
lead to the failure of judgment in the second stage [14,15].

The main research content of early warning of AOC is to learn the
latent relationship between process parameters and AOC, and predict
whether abnormal conditions will occur in the future according to
process parameters [16]. Then, the occurrence of AOC in FCCU can
be avoided by adjusting the controllable operating variables. However,
apart from the general characteristics of practical complex industrial
systems such as high-dimensional, non-linear, time-varying, and large
differences in time granularity of multi-modal data [4], there are three
fundamental challenges in the early warning task of AOC of FCCU as
follows.

• High Noise. In the harsh operating environment of high humid-
ity, high temperature, and high pressure, the data collected in
real-time by various industrial sensors often have measurement
errors [17].

• Strong Hysteresis. The reaction time of huge FCCU is very long,
which leads to the change in operating conditions caused by
various operating variables that need to be delayed for a certain
time to get feedback [18].

• Class Imbalance. In the real industrial environment, the num-
ber of AOC is far less than that of normal operating condi-
tions, i.e., the dataset collected has an extreme sample imbalance
problem [19].

Most existing two-stage DL-based methods usually ignore these
three challenges or improve the models only for a specific challenge.
In this paper, an end-to-end early warning method, called AEW-AOC
framework, is proposed to achieve accurate and real-time early warning
of AOC for FCCU in the real industrial environment. Compared with
existing methods, the proposed AEW-AOC framework directly predicts
whether the future time window at the current moment contains ab-
normal state values, i.e., the regression analysis of early warning can
be simplified as a binary classification task. Moreover, in view of these
three challenges mentioned above, the proposed AEW-AOC framework
contains three parts, i.e., SCD, Conv-LSTM, and APA module. First,
the SCD module, which is designed for noise reduction, consists of
a self-attention layer and a decoder layer of auto-encoder. Then, in
the Conv-LSTM part, a multi-channel convolution layer and a multi-
layer LSTM are utilized to extract the temporal variation features of
process parameters. Finally, in the APA part, the data of historical
abnormal operating conditions are first clustered into several common
abnormal patterns. Then, based on the clustered abnormal patterns,
the attention mechanism is introduced to enforce the Conv-LSTM to
extract the discriminate features of abnormal operating conditions. the
contributions can be summarized as follows.

• A straightforward yet effective framework is proposed to realize
early warning of AOC by reformulating early warning as a simple
binary classification. The complexity of the prediction task is
reduced, and error transmission is avoided. Extensive experi-
ments on dataset collected from actual scenarios demonstrate the
effectiveness and superiority of the proposed framework.

• The proposed SCD module utilizes the self-attention mechanism
to learn the spatio-temporal correlation of various process pa-
rameters for noise reduction. Moreover, the introduction of auto-
encoder can maintain the physical meaning of each process pa-
rameter, which improves the interpretability of the model.
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• The multi-channel convolutional layer of Conv-LSTM can extract
the time-varying features of each process parameter in the local
time window, and the LSTM can memorize the influence of
historical process parameters on subsequent operating conditions,
then the problem of strong hysteresis is mitigated.

• The introduced of APA module based on clustered abnormal
patterns and attention mechanism strengthens the latent repre-
sentation related to AOC in the features extracted by Conv-LSTM
module, so as to better distinguish between AOC and normal
operating conditions, then the class imbalance problem is well
solved.

. Related work

With the development of advanced sensors and database technolo-
ies, a large amount of production process data from FCCU can be col-
ected and stored in real-time databases. Data-driven methods, particu-
arly DL techniques, have shown significant progress in early warning
or AOC in the FCCU [20]. Specifically, the sensor data in chemical pro-
ess analysis is typical temporal data, so the LSTM model carries huge
eight in the research of abnormal condition analysis [21,22]. Com-
ared with LSTM which pays more attention to the global feature, the
onvolutional Neural Network (CNN) shows strong local feature extrac-
ion ability, which has gradually become the main force in the feature
epresentation of sensor sequence data recently. In summary, employ-
ng DL-based models, especially LSTM and CNN, for data processing
nd analysis in industrial environments, primarily driven by sensor
ata, has become an increasingly prevalent and indispensable trend.

It is important to highlight that existing methods regarded the early
arning of AOC in FCCU as a regression task. They have focused on pre-
icting the future trends of indicator data, which represent conditions
ased on collected device parameters [20]. For instance, the DL-SDG
pproach proposed in [5] utilized the LSTM with attention mechanism
nd convolution layer to predict the future trend of the key variable.
nother method, LSTM-GRU, proposed in [23], developed a multi-
ariate time series forecasting model by combining LSTM and Gated
ecurrent Unit (GRU) to predict future trends of key variable data.
lthough these existing methods have made valuable contributions, the
ethod proposed in this paper stands out as the first to reformulate the

earning task of early warning of AOC in FCCU as a binary classification
roblem. Instead of predicting the future trend, the proposed model
irectly predicts whether abnormal conditions may occur in the target
ime window. Consequently, the proposed model differs from these
ethods in terms of method design focus and evaluation metrics.
owever, what can be learned and discussed is that for the challenges
f high noise, strong hysteresis, and class imbalance mentioned earlier,

existing methods have designed and validated models for one of them.
For the problem of high noise, there are many methods based on

Principal Component Analysis (PCA) to eliminate redundant features
and noise for achieving more accurate detection of abnormal condi-
tions [24]. However, the original process data will lose the physical
meaning and temporal correlation after coordinating space transforma-
tion using PCA, which makes the prediction model more difficult to
understand. The DL-SDG method proposed in [5] introduces the Spear-
man Ranking Correlation Coefficient (SRCC) [25] to eliminate noise
and redundant variables, as well as applies the LSTM with attention
mechanisms and convolution layer to predict the future trend of the
key variable in the early warning of AOC for FCCU. The experiment
results of DL-SDG demonstrate that convolution layers and attention
mechanisms are helpful in improving prediction accuracy. However,
SRCC, which is insensitive to outliers, often produces an unsatisfac-
tory de-noising effect, which is not conducive to improving prediction
accuracy. For the problem of strong hysteresis, most existing DL-based
methods use LSTM or CNN, or a combination of both to extract the
temporal variation features [5,26]. For instance, Wende et al. proposed
a data-driven and knowledge-based fusion method, called DL-SDG,
3

ℎ

where the LSTM and convolution layer are combined for prediction
of the future trend of the key variable [5]. However, the predictive
performance of these methods is influenced by the time step size, which
determines the amount of historical data used for future predictions.

As a typical anomaly detection task, the number of samples under
abnormal conditions is far less than that under normal conditions in
early warning of AOC, i.e., the class imbalance problem [27]. Most ex-
isting DL-based anomaly detection methods solve the problem of class
imbalance by increasing the weight of abnormal samples or changing
the weight of accumulation loss, but the effect of such methods is
limited [28]. With the development of generative models, data augmen-
tation has become another common paradigm to solve the problem of
class imbalance [29]. The methods proposed in [13] design an original
internal leakage mechanism model and simulate it by combining dy-
namic simulations to obtain samples of abnormal conditions. Then, the
LSTM is utilized to predict abnormal trends based on the augmented
dataset. Peng et al. [30] proposed a data augmentation method based
on Generative Adversarial Network (GAN) [31] to generate fault data.
The data obtained through dynamic simulation differs significantly
from real data, and the data synthesized by generative models often
lack diversity. As a result, the effectiveness of data augmentation meth-
ods in addressing the problem of class imbalance still requires further
improvement [32].

3. Background

In this paper, the existing self-correlation mechanism [33] and
Conv-LSTM [23] are integrated into a unified framework for early
warning of AOC in the FCCU. Therefore, a brief introduction to the
self-correlation mechanism and Conv-LSTM is first provided.

Self-Correlation Mechanism. Self-correlation, i.e., self-attention, is
n attention mechanism that establishes relationships between different
ositions within a single sequence to compute a representation of
he sequence [33]. This mechanism allows the model to dynamically
ocus on different parts of the input sequence, capturing the depen-
encies and correlations between its elements. When applying the
elf-correlation mechanism, the attention function on a set of queries
s computed, which are packed together into a matrix 𝑄. Similarly,
he keys and values are also packed together into matrices 𝐾 and 𝑉 ,
espectively. The output of attention is then computed as follows:

𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄,𝐾, 𝑉 ) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑄𝐾𝑇
√

𝑑𝑘
)𝑉 , (1)

where 𝑑𝑘 is the dimension of keys 𝐾. Instead of performing a single
ttention function, Ashish et al. [33] discovered that it is beneficial
o linearly project the queries, keys, and values ℎ times, i.e., multi-
ead self-attention, with different linear projections to 𝑑𝑘, 𝑑𝑘, and 𝑑𝑣
imensions, respectively. The multi-head self-attention with ℎ heads
an be computed as follows:

𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝑄,𝐾, 𝑉 ) = 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑1,… , ℎ𝑒𝑎𝑑ℎ)𝑊 𝑂 , (2)

here ℎ𝑒𝑎𝑑𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑊 𝑄
𝑖 , 𝐾𝑊 𝐾

𝑖 , 𝑉 𝑊 𝑉
𝑖 ) and 𝑊 𝑂 ∈ Rℎ𝑑𝑣×𝑑𝑚𝑜𝑑𝑒𝑙 .

Conv-LSTM. Conv-LSTM [23] is a variant of the LSTM model [34]
hat incorporates convolutional operations into the LSTM architecture.
his combination enables the model to capture both spatial and tem-
oral dependencies in sequential data. The Conv-LSTM unit consists of
cell state 𝑐, input gate 𝑖, forget gate 𝑓 , and output gate 𝑜, similar

o traditional LSTM, but with convolutional operations applied to the
nput and hidden states. The memory cells make up the Conv-LSTM
pdate their states by controlling the activation of each gate unit, which
s a continuous value between 0 and 1. The hidden state ℎ𝑡 of the
onv-LSTM cell is updated every 𝑡 step as follows:

𝑡 = 𝜎(conv(𝑥𝑡)⊗𝑤𝑥𝑖 + conv(ℎ𝑡−1)⊗𝑤ℎ𝑖 + 𝑏𝑖),

𝑡 = 𝜎(conv(𝑥𝑡)⊗𝑤𝑥𝑓 + conv(ℎ𝑡−1)⊗𝑤ℎ𝑓 + 𝑏𝑓 ),

𝑡 = 𝜎(conv(𝑥𝑡)⊗𝑤𝑥𝑜 + conv(ℎ𝑡−1)⊗𝑤ℎ𝑜 + 𝑏𝑜),

𝑡 = 𝑓𝑡 ⊙ 𝑐𝑡−1 + 𝑖𝑡 ⊙ tanh(conv(𝑥𝑡)⊗𝑤𝑥𝑐 + conv(ℎ𝑡−1)⊗𝑤ℎ𝑐 + 𝑏𝑐 ),

(3)
𝑡 = 𝑜𝑡 ⊙ tanh(𝑐𝑡).
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Fig. 1. Learning task of early warning of abnormal operating conditions.
Fig. 2. Block diagram of the proposed AEW-AOC framework.

The last layer of CNN-LSTM is made up of fully connected layers. This
can be used to extract deep feature representations for classification
from raw data.

4. Methodology

4.1. Problem descriptions

The AOC of FCCU refers to the value 𝑥 of the monitored sensor
deviates from the normal range [𝐴𝐿, 𝐴𝐻 ], where 𝐴𝐿 and 𝐴𝐻 denote
the low alarm threshold and high alarm threshold of the normal value
of the sensor, respectively [35]. When 𝑥 < 𝐴𝐿 or 𝑥 > 𝐴𝐻 , the self-
protection mechanism of the FCCU will be triggered and the operation
will be stopped to avoid major safety accidents. Such stoppage of pro-
duction is called unplanned shutdown in the petrochemical field [36].
In order to avoid production loss caused by the unplanned shutdown,
a two-level alarm interlocking mechanism is also set in the FCCU.
In this mechanism, apart from the low alarm threshold 𝐴𝐿 and high
alarm threshold 𝐴𝐻 , two thresholds of low early warning 𝑊𝐿 and high
early warning 𝑊𝐻 are also introduced. Once 𝑥 < 𝑊𝐿 or 𝑥 > 𝑊𝐻 ,
the operators will be reminded that the system is on the edge of
AOC and corresponding operating conditions need to be adjusted as
soon as possible to avoid system deterioration [37]. However, the time
interval from early warning to alarm in the two-level alarm interlocking
mechanism is often very short, which cannot ensure that the operator
has sufficient time to deal with problems. The early warning of AOC
aims to predict whether there will be a low early warning 𝑊𝐿 or high
early warning 𝑊𝐻 within a certain time range from the current time
according to the historical operating conditions [5,36].

Here, some notations and the problem definition are first intro-
duced. Specifically, let 𝑋 = {𝑋1, 𝑋2,… , 𝑋𝑁} denotes the process
parameters of 𝑁 monitoring sensors within source time window 𝑇1
before the observed point time 𝑡. The 𝑌 = {0, 1} denotes the class
4

label of conditions samples, where 𝑌 = 1 is the class label of abnormal
conditions and 𝑌 = 0 is the class label of normal conditions. Then,
according to the data acquisition time 𝑀 included in the time window
𝑇1, a set of vectors is utilized to express the process parameters of each
sensor, i.e., 𝑋𝑛 = {𝑥1𝑛, 𝑥

2
𝑛,… , 𝑥𝑚𝑛 ,… , 𝑥𝑀𝑛 }. Among them, 𝑋 ∈ R𝑁×𝑀 ,

and the 𝑥𝑚𝑛 denotes the vector of the process parameter of the 𝑛th
sensor at time 𝑚 in time window 𝑇1. Compared with existing methods,
which predict the value of process parameters of each sensor at each
time in the target time window 𝑇2 after the observed point time 𝑡, the
learning task of early warning of AOC is reformulated as a simple binary
classification by directly predicting whether abnormal conditions may
occur in the target time window 𝑇2. Fig. 1 shows the constructed
learning task of early warning of AOC, which greatly reduces the
difficulty of the task of early warning.

4.2. Overview of AEW-AOC framework

In this paper, an end-to-end AEW-AOC framework is proposed for
early warning of AOC in the FCCU by addressing the high noise, strong
hysteresis, and class imbalance, simultaneously. As shown in Fig. 2, the
proposed AEW-AOC framework is composed of three parts, i.e., SCD,
Conv-LSTM, and APA modules. Among them, the SCD module with
parameters 𝛩 composed of a self-correlation layer and a decoder is de-
signed to denoise the input process parameter 𝑋 in source time window
𝑇1 before the observed point time 𝑡 to 𝑋, i.e., 𝑓𝛩 ∶ 𝑋 → 𝑋. Based on
the multi-head self-correlation attention mechanism, the SCD module is
able to find the temporal and spatial correlation of process parameters.
Then, the process parameters are modified and denoised by the his-
torical process parameters. The Conv-LSTM module with parameters 𝛷
composed of multi-channel convolution layer and LSTM is utilized to
extract the temporal variation features 𝒉 of from process parameters
after denoising 𝑋, i.e., 𝑓𝛷 ∶ 𝑋 → ℎ. The Conv-LSTM module can
mitigate the problem of strong hysteresis by memorizing the influence
of historical process parameters on subsequent operating conditions.
After that, the data of historical abnormal operating conditions are
clustered into 𝐾 common abnormal patterns, where the center vector
of 𝑘th abnormal conditions pattern is represented by 𝑜𝑘. Then, based
on center vectors of abnormal conditions patterns  = {𝑜1, 𝑜2,… , 𝑜𝐾},
and corresponding trade-off weights  = {𝑤1, 𝑤2,… , 𝑤𝐾}, as well as
the temporal variation features 𝒉, the APA module with parameters 𝛹
is introduced to predict the probability of abnormal conditions in the
time window 𝑇2 after observed point time 𝑡, i.e., 𝑓𝛹 ∶ ℎ,, → 𝑝.
Based on clustered abnormal patterns, the APA module strengthens the
latent representation related to abnormal conditions, so as to better
distinguish between abnormal and normal conditions, then the class
imbalance problem is well solved. Specifically, the structures of three
core parts are discussed in subsections 4.3, 4.4, and 4.5, respectively.
Finally, the training method of the whole AEW-AOC framework is
introduced in Section 4.6.
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Fig. 3. Illustration of the proposed Self-Correlation Denoiser (SCD) module based on multi-head self-correlation.
4.3. Self-Correlation Denoiser module

In the complex environment, the process parameters of FCCU col-
lected by various sensors often have a lot of noise, which will lead
to huge interference in the data analysis. Therefore, the SCD module
is first proposed to denoise the sequence data collected by different
sensors. It is worth noting that the continuously varying sequence data
of process parameters has a strong correlation in time and space. That
is, the value of a sensor at a certain time will be affected by a long
period of historical data, and the change of a process parameter may
also produce a butterfly effect for a long time in the future. Moreover,
the sequence data collected by a sensor may also be strongly related to
that of other sensors, e.g., the temperature sensor and pressure sensor.

Therefore, the proposed SCD module is designed to denoise the
input process parameters through two channels of time and space.
As shown in Fig. 3, in the space channel, each row of the original
process parameters matrix 𝑋, i.e., the vector composed of the process
parameters of a sensor at 𝑀 times in the 𝑇1 time window, e.g., 𝑋𝑛 =
{𝑥1𝑛, 𝑥

2
𝑛,… , 𝑥𝑀𝑛 }, is input into the multi-head self-correlation network

to obtain the space view results 𝑋𝑆 . Specifically, the block diagrams
in the yellow and purple boxes in Fig. 3 show the specific structure of
self-correlation and multi-head self-correlation, respectively. Following
the self-attention mechanism proposed in [33], a linear transformation
is applied on input 𝑋 to obtain the key 𝐾 and value 𝑉 in the proposed
self-correlation mechanism as follows:

𝐾 = 𝑊𝐾 ⋅𝑋; 𝑉 = 𝑊𝑉 ⋅𝑋, (4)

where 𝑊𝐾 and 𝑊𝑉 denote the trainable weights. Different from the
self-attention mechanism [33], the original input 𝑋 is directly used as
the query 𝑄. Then, the self-correlation of input 𝑋 can be calculated by:

𝐶𝑜𝑟𝑟𝑆 (𝑋) = cos (𝑋,𝑊𝐾 ⋅𝑋)⊙ (𝑊𝑉 ⋅𝑋) = cos (𝑋,𝐾)⊙ 𝑉 , (5)

where ⊙ denotes the scalar multiplication between scalar cos (𝑋,𝐾) and
vector 𝑉 .
5

As shown in the block diagram in the purple box in Fig. 3, 𝐻
independent self-correlation functions are used to extract correlations
{𝐶𝑜𝑟𝑟1𝑆 ,… , 𝐶𝑜𝑟𝑟ℎ𝑆 ,… , 𝐶𝑜𝑟𝑟𝐻𝑆 } and concatenate them to combine in-
formation in different perspectives in the proposed multi-head self-
correlation network. In order to maintain the structural consistency
of the process parameters after denoising, a linear transformation (a
single fully connected layer without activation function) is performed
on the concatenated vectors to obtain the space view 𝑋𝑆 with the same
dimension as the input, i.e., 𝑋;𝑋𝑆 ∈ R𝑁×𝑀 as follows:

𝑋𝑆 = 𝑊𝑆 ⋅ 𝐶𝑜𝑛𝑐𝑎𝑡(𝐶𝑜𝑟𝑟1𝑆 ,… , 𝐶𝑜𝑟𝑟𝐻𝑆 ), (6)

where 𝑊𝑆 denotes the trainable weights and 𝐶𝑜𝑛𝑐𝑎𝑡(⋅) denotes the
vector concatenation operation. Similarly, in the time channel, the
original process parameters matrix 𝑋 is first transposed to 𝑋𝑇 ∈ R𝑀×𝑁 ,
where each row represents the process parameters of all 𝑁 sensors at a
certain time point, e.g., 𝑋𝑚 = {𝑥𝑚1 , 𝑥

𝑚
2 ,… , 𝑥𝑚𝑁}. Then, the matrix 𝑋𝑇 is

input into another multi-head self-correlation network with the same
structure and different parameters as the space channel. Transposing
the output again, the time view results 𝑋𝑇 ∈ R𝑁×𝑀 can be obtained as
follows:

𝑋𝑇 = (𝑊𝑇 ⋅ 𝐶𝑜𝑛𝑐𝑎𝑡(𝐶𝑜𝑟𝑟1𝑇 ,… , 𝐶𝑜𝑟𝑟𝐻𝑇 ))𝑇 . (7)

After that, the space view 𝑋𝑆 and time view 𝑋𝑇 are fused to 𝑋𝐹 by
a convolution layer with 1 × 1 kernel. Finally, based on the fused
feature 𝑋𝐹 , the denoised process parameters 𝑋 is obtained by a decoder
containing a Fully Connected (FC) layer, a Dropout activate function
layer, an FC layer, and a Dropout layer. The reconstruction loss function
of SCD based on Mean Square Error (MSE) is defined as follows:

𝑆𝐶𝐷 = 𝑀𝑆𝐸(𝑋,𝑋) = 1
𝐿 ×𝑁 ×𝑀

𝐿
∑

𝑙=1

𝑁
∑

𝑛=1

𝑀
∑

𝑚=1

[

𝑋(𝑙)𝑚𝑛 −𝑋(𝑙)𝑚𝑛
]2, (8)

where 𝐿 is the number of training samples with each sample containing
process parameters of 𝑁 monitoring sensors at 𝑀 times. Through
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Fig. 4. Illustration of the proposed convolutional long short-term memory (Conv-LSTM)
module for extraction of temporal variation features.

minimizing the loss 𝑆𝐶𝐷, the SCD module effectively adjusts the
process parameter values of the target point at the current time by
leveraging both the historical process parameter values and the values
associated with other relevant points. By considering the temporal
and spatial correlations among a set of process parameter values, the
denoising operation achieves a substantial improvement in its effective-
ness. Importantly, this denoising process preserves the original physical
interpretation and meaning of the input data.

4.4. Convolutional long short-term memory module

As shown in Fig. 2, the Conv-LSTM module is utilized to extract
the deep representations 𝒉 reflecting the temporal variation from the
denoised process parameters 𝑋, i.e., 𝑓𝛷 ∶ 𝑋 → ℎ. Fig. 4 shows the
specific structure of the proposed Conv-LSTM module composed of two
multi-channel convolution layers and a two-layer unidirectional LSTM.
Specifically, in the first convolution layer, three one-dimensional con-
volutions (1D-Conv) with different kernel sizes and channel numbers
are used to extract three feature maps, which are defined as follows:

𝐹𝑖 = 𝑓 (𝑋;𝑊𝑖, 𝐾𝑖, 𝐶𝑖), ∀𝑖 ∈ [1, 2, 3], (9)

where 𝑓 (𝑊𝑖, 𝐾𝑖, 𝐶𝑖) denotes the 1D-Conv with trainable weights 𝑊𝑖,
kernel size of 𝐾𝑖, and channel number of 𝐶𝑖, respectively. In this work,
three kernel sizes 𝐾1, 𝐾2, and 𝐾3 are set as 7, 5, and 3, respectively.
Set the strides of convolution as 1, then three feature maps {𝐹1, 𝐹2, 𝐹3}
with sizes of 𝐶1 ×𝑁 × (𝑀 − 6), 𝐶2 ×𝑁 × (𝑀 − 4), and 𝐶3 ×𝑁 × (𝑀 − 2)
can be obtained.

After extracting the feature maps of different scales from the de-
noised process parameters by 1D-Conv, the feature maps are stacked
to obtain fusion representations. Most existing methods perform the
padding to the smaller feature maps before stacking to ensure the same
scales. Considering that there is an amount of redundant information in
feature maps extracted by 1D-Conv, the feature maps on a larger scale
are cropped to the same size as the smallest scale feature map. Then, the
𝐶1+𝐶2+𝐶3 feature maps are stacked with the size of 𝑁×(𝑀−6), and the
multi-channel feature maps are fused to 𝐹 by the second convolution
layer with 1 × 1 kernel. After that, the shortcut connection proposed
in ResNet [38] applies operations of add and layer normalization to
source input 𝑋 and fused feature map 𝐹 for extracting discriminative
and robust features. Finally, the two-layer unidirectional LSTM further
extracts the deep latent features 𝒉 with temporal varying.

In order to make the deep latent features 𝒉 extracted by the Conv-
LSTM module can be better used for the final early warning of abnormal
6

conditions, the deep latent features 𝒉 are input into a Fully-connected
Neural Network (FNN) to obtain the prediction result 𝑦̂. The FNN con-
tains two FC layers and a sigmoid activate function layer for non-linear
transformation. Then, the whole Conv-LSTM module is constrained
through the Binary Cross Entropy (BCE) loss 𝐶𝐿𝑆𝑇𝑀 of 𝐿 training
samples between the prediction result 𝑦̂ and the class label 𝑦 as follows:

𝐶𝐿𝑆𝑇𝑀 = 𝐵𝐶𝐸(𝑦, 𝑦̂) = − 1
𝐿

𝐿
∑

𝑙=1

[

𝑦𝑙 log(𝑦̂𝑙) + (1 − 𝑦𝑙) log(1 − 𝑦̂𝑙)
]

. (10)

4.5. Abnormal pattern attention module

In the practical scenes, the number of normal operating conditions
is far more than that of abnormal conditions, i.e., class imbalance
problem, which causes poor performance in the recall rate of abnormal
conditions prediction. In this paper, an APA module is proposed to
address the class imbalance problem. As shown in Fig. 2, there are
three inputs in the proposed APA module, i.e., the deep latent fea-
tures 𝒉, the center vectors  = {𝑜1, 𝑜2,… , 𝑜𝐾}, and trade-off weights
 = {𝑤1, 𝑤2,… , 𝑤𝐾}. It is worth noting that the clustering model
based on the Gaussian Mixture Model (GMM) with Akaike Information
Criteria (AIC) is utilized to approximate the distribution of abnormal
conditions [39]. Algorithm 1 outlines the calculation procedures of the
proposed GMM-based clustering model for finding the center vectors 
of 𝐾 clusters.

Algorithm 1 Calculation procedures for center vectors of the abnormal
conditions patterns in the proposed APA module.
1: Input: features of all conditions samples 𝑯 , the number of

all conditions samples 𝐿, labels of conditions samples 𝑌 , the
hyper-parameters 𝛼, 𝜂, 𝜀, and 𝐼𝑡𝑟.

2: Output: 𝐾 : center vectors of abnormal conditions patterns.
3:  ← 𝑃𝐶𝐴(𝑯), # dimension reduction
4: ∗ ← 𝐺𝑀𝑀(|𝑌 = 1), # 𝐾∗ initial centers of clusters
5: for 𝑘 = 1, ..., 𝐾∗ do
6: 𝑘

𝑎 ,
𝑘
𝑏 → ∅, # initialize abnormal and normal pattern set as empty

set
7: for 𝑖𝑡 = 1, ..., 𝐼𝑡𝑟 do
8: ′ ← sort() by |ℎ𝑙 − 𝑜𝑘∗|
9: for ℎ in ′ do

10: if 𝑦 = 1 then
11: 𝑘

𝑎 .𝑎𝑑𝑑(ℎ), # add abnormal sample to 𝑘
𝑎

12: else
13: 𝑘

𝑏 .𝑎𝑑𝑑(ℎ), # add normal sample to 𝑘
𝑏

14: end if
15: if |𝑘

𝑏 | ≥ 𝛼|𝑘
𝑎 | then

16: break
17: end if
18: end for
19: if |𝑘

𝑎 | < 𝜂 then
20: break # discard this abnormal set 𝑎
21: else
22: 𝑜𝑘 ← 𝑓𝑐𝑒𝑛𝑡𝑒𝑟(𝑘

𝑎 ,
𝑘
𝑏 ), # update center vector

23: end if
24: if |𝑜𝑘∗ − 𝑜𝑘| < 𝜀 then
25: 𝑜𝑘 ← 𝑃𝐶𝐴−1(𝑜𝑘), # perform PCA inversion
26: end if
27: end for
28: end for

First, the PCA reduces the dimension of features of 𝐿 operating
conditions samples, i.e., 𝑃𝐶𝐴(𝑯) → . The noise-over-signal ratio of
PCA is set as 0.25, i.e., the principal eigenvalues explain 80% of data
variance. Then, the GMM-based clustering model clusters the features
of abnormal conditions into 𝐾∗ clusters, and calculates the initial center
vector of each cluster ∗ by 𝐺𝑀𝑀(|𝑌 = 1). Then, the center vector
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of each cluster is updated through the following iterative operations to
make the abnormal samples around the new cluster centers as many as
possible and the normal samples as few as possible.

In the iterative procedures (line 5–line 29), two empty sets 𝑘
𝑎 and

𝑘
𝑏 for each cluster are first initialized, which are used to record the
bnormal samples and normal samples in the 𝑘th cluster, respectively.
hen, for the 𝑘th cluster (line 8–line 28), the features  of all 𝐿 samples

are sorted according to the Least Absolute Deviations (LAD) from the
cluster center 𝑜∗𝑘, i.e., |ℎ𝑙 − 𝑜∗𝑘|. After that, the features ℎ of the sorted
set ′ traversed in the order from near to far from the cluster center ∗

𝑘
line 10–line 19). The feature of abnormal conditions sample {ℎ|𝑦 = 1}
nd that of normal conditions sample {ℎ|𝑦 = 0} are add to pattern sets
𝑘
𝑎 and 𝑘

𝑏 , respectively. Let |𝑘
𝑎 | and |𝑘

𝑏 | denote the number of samples
n the abnormal pattern set and normal pattern set, respectively. Until
he ratio of |𝑘

𝑏 | to |𝑘
𝑎 | is greater than or equal to the upper limit of

he proportion, i.e., |𝑘
𝑏 |∕|

𝑘
𝑎 | ≥ 𝛼, stop the traversal. If the number

f samples in the abnormal pattern set is lower than the set limit,
.e., |𝑘

𝑎 | < 𝜂, the abnormal pattern set 𝑘
𝑎 obtained in the 𝑘th cluster

ill be discarded. Otherwise, a calculation formula 𝑓𝑐𝑒𝑛𝑡𝑒𝑟(𝑘
𝑎 ,

𝑘
𝑏 ) for

enter vector 𝑜𝑘 of 𝑘th abnormal conditions pattern is designed to make
he sum of the distances between all samples in the abnormal pattern
et 𝑘

𝑎 and center vector 𝑜𝑘 is small enough, as well as that between
ll samples in the normal pattern set 𝑘

𝑏 and center vector 𝑜𝑘 is large
nough. The 𝑜𝑘 can be written as:
𝑘 = 𝑓𝑐𝑒𝑛𝑡𝑒𝑟(𝑘

𝑎 ,
𝑘
𝑏 ) = argmin

𝑜

(
∑

ℎ∼𝑘
𝑎

(ℎ − 𝑜)2 −
∑

ℎ∼𝑘
𝑏

(ℎ − 𝑜)2
)

,

s.t. ℎ𝑚𝑖𝑛𝑗 ≤ 𝑜𝑘𝑗 ≤ ℎ𝑚𝑎𝑥𝑗 , 1 ≤ 𝑗 ≤ 𝐷,
(11)

here ℎ𝑚𝑎𝑥𝑗 = max{ℎ𝑗 |ℎ ∈ 𝑘
𝑎 }, and ℎ𝑚𝑖𝑛𝑗 = min{ℎ𝑗 |ℎ ∈ 𝑘

𝑎 }. The 𝐷
enotes the dimension of ℎ, ℎ𝑚𝑎𝑥, ℎ𝑚𝑖𝑛, and 𝑜𝑘, i.e., ℎ, ℎ𝑚𝑎𝑥, ℎ𝑚𝑖𝑛, 𝑜𝑘 ∈

R𝐷. Considering that the calculation of boundary conditions is complex,
the 𝑜𝑘 is simplified as follows:

𝑜𝑘 = min{𝑜̃, ℏ̃}, (12)

where
𝑜̃ = argmin

𝑜

(
∑

ℎ∼𝑘
𝑎

(ℎ − 𝑜)2 −
∑

ℎ∼𝑘
𝑏

(ℎ − 𝑜)2
)

,

ℏ̃ = argmin
ℏ

(
∑

ℎ∼𝑘
𝑎

(ℎ − ℏ)2 −
∑

ℎ∼𝑘
𝑏

(ℎ − ℏ)2
)

,
(13)

where ℏ ∈ 𝑘
𝑎 . Let 𝑐𝑒𝑛𝑡𝑒𝑟 =

∑

ℎ∼𝑘
𝑎
(ℎ − 𝑜)2 −

∑

ℎ∼𝑘
𝑏
(ℎ − 𝑜)2. Then, the

gradient of 𝑐𝑒𝑛𝑡𝑒𝑟(𝑜) can be derived as follows:
𝜕𝑐𝑒𝑛𝑡𝑒𝑟

𝜕𝑜
=
(

|𝑘
𝑎 |𝑜 −

∑

ℎ∼𝑘
𝑎

ℎ
)

−
(

|𝑘
𝑏 |𝑜 −

∑

ℎ∼𝑘
𝑏

ℎ
)

,

= (|𝑘
𝑎 | − |𝑘

𝑏 |)𝑜 −
(
∑

ℎ∼𝑘
𝑎

ℎ +
∑

ℎ∼𝑘
𝑏

ℎ
)

.
(14)

hen 𝑜 = 𝑜̃, 𝜕𝑐𝑒𝑛𝑡𝑒𝑟∕𝜕𝑜 = 0. Then, the 𝑜̃ can be obtained as follows:

𝑜̃ =

∑

ℎ∼𝑘
𝑎
ℎ +

∑

ℎ∼𝑘
𝑏
ℎ

𝑎𝑘 − 𝑏𝑘
. (15)

Then, the center vector 𝑜𝑘∗ of 𝑘th cluster is updated to the new ab-
normal pattern center vector 𝑜𝑘 through Eq. (12) (line 23 in Algorithm
1). Moreover, the offset threshold 𝜀 is manually set to judge whether the
process converges. If the L1 distance between center vectors 𝑜𝑘∗ and 𝑜𝑘
is less than the offset threshold, i.e., 𝐿1(𝑜𝑘∗, 𝑜𝑘) = ∑𝐷

𝑑=1 |𝑜
𝑘∗
𝑑 −𝑜𝑘𝑑 | < 𝜀, the

PCA inverse transform will be performed on the new center vector 𝑜𝑘,
and the transformed result will be taken as the final center vector the
𝑘th abnormal conditions pattern. Based on these, 𝐾 center vectors  =
{𝑂𝑘

|𝑘 = 1,… , 𝐾} can be obtained, where 𝐾 ≤ 𝐾∗, to represent different
atterns of abnormal operating conditions. The SoftMax is also used to
llocate the trade-off weight 𝑤𝑘 of center vector 𝑜𝑘 according to the
umber of abnormal samples contained in each abnormal conditions
attern. The weight 𝑤𝑘 can be calculated as follows:

𝑘 =
exp 𝑎𝑘

∑𝐾 𝑘
. (16)
7

𝑘=1 exp 𝑎
Algorithm 2 Training Procedures of the complete AEW-AOC frame-
work.
1: Input: original process parameters matrix 𝑋, labels of con-

ditions samples 𝑌 , initialization weights 𝛩, 𝛷, and 𝛹 , and
hyper-parameters 𝜆1 and 𝜆2.

2: Output: 𝑝: prediction probability of abnormal conditions.
3: First stage:
4: 𝐶𝑜𝑟𝑟𝑆 (𝑋) = cos (𝑋,𝐾)⊙ 𝑉 , # extract correlations of space channel
5: 𝑋𝑆 = 𝑊𝑆 ⋅ 𝐶𝑜𝑛𝑐𝑎𝑡(𝐶𝑜𝑟𝑟1𝑆 , ..., 𝐶𝑜𝑟𝑟𝐻𝑆 ), # compute space view result
6: 𝐶𝑜𝑟𝑟𝑇 (𝑋) = cos (𝑋,𝐾)⊙ 𝑉 , # extract correlations of time channel
7: 𝑋𝑇 = (𝑊𝑇 ⋅ 𝐶𝑜𝑛𝑐𝑎𝑡(𝐶𝑜𝑟𝑟1𝑇 , ..., 𝐶𝑜𝑟𝑟𝐻𝑇 ))𝑇 , # compute time view result
8: 𝑋̂ ← 𝑓𝛩(𝐶𝑜𝑛𝑣(𝑋𝑆 , 𝑋𝑇 )), # obtain the denoised process parameter
9: 𝑆𝐶𝐷 = 𝑀𝑆𝐸(𝑋, 𝑋̂), # reconstruction loss for 𝛩

10: 𝛩1 = argmin𝛩 𝑆𝐶𝐷, # optimize 𝛩
11: Second stage:
12: 𝐹𝑖 ← 𝑓 (𝑋̂;𝑊𝑖, 𝐾𝑖, 𝐶𝑖), # obtain three feature maps
3: 𝐹 ← 𝐶𝑜𝑛𝑣(𝐹1, 𝐹2, 𝐹3), # obtain fused feature map

14: ℎ ← 𝐿𝑆𝑇𝑀(𝑁𝑜𝑟𝑚(𝐹 + 𝑋̂)), # extract deep latent feature
15: 𝑦̂ ← 𝑓𝛷(ℎ), # obtain prediction result
16: 𝐶𝐿𝑆𝑇𝑀 = 𝐵𝐶𝐸(𝑦, 𝑦̂), # classification loss for 𝛷
17: 𝛩2, 𝛷1 = argmin𝛩1 ,𝛷 𝐶𝐿𝑆𝑇𝑀 , # optimize 𝛩2 and 𝛷1
18: 𝛩3, 𝛷2 = argmin𝛩2 ,𝛷1

(𝐶𝐿𝑆𝑇𝑀 + 𝜆1𝑆𝐶𝐷), # optimize 𝛩3 and 𝛷2
19: Third stage:
20: Compute the center vectors of abnormal patterns 𝑜𝑘 by Algorithm

1
1: Compute the attention value 𝑎𝑘 based on 𝑜𝑘 and ℎ by Eq. (17)
2: 𝑝 ← 𝑓𝛹 (𝑎𝑘, ℎ), # obtain binary classification
3: 𝐴𝑃𝐴 = 𝐵𝐶𝐸(𝑦, 𝑝), # classification loss for 𝛹
4: 𝛩4, 𝛷3, 𝛹1 = argmin𝛩3 ,𝛷2 ,𝛹 𝐴𝑃𝐴, # optimize 𝛩4, 𝛷3, and 𝛹1
5: 𝛩∗, 𝛷∗, 𝛹∗ = argmin𝛩4 ,𝛷3 ,𝛹1

(𝐴𝑃𝐴+𝜆2𝑆𝐶𝐷), # update all parameters

As shown in Fig. 5, the feature 𝒉 of a conditions sample, as well as
enter vectors  = {𝑜1, 𝑜2,… , 𝑜𝐾} and corresponding trade-off weights
 = {𝑤1, 𝑤2,… , 𝑤𝐾} of 𝐾 abnormal conditions patterns are input into
the APA module to obtain 𝐾 attention values {𝑎1, 𝑎2,… , 𝑎𝐾} between
each sample and 𝐾 abnormal conditions patterns. The attention values
𝑎𝑘 can be calculated as follows:

𝑎𝑘 = 𝑤𝑘 ⊗ tanh (𝑊 𝑘
𝐾ℎ +𝑊 𝑘

𝑄𝑜
𝑘)⊗ (𝑊 𝑘

𝑉 ℎ), (17)

where ℎ, 𝑜𝑘 ∈ R𝐷, and 𝑊 𝑘
𝐾 ,𝑊

𝑘
𝑄 ,𝑊

𝑘
𝑉 are three weight matrices with the

same dimension. The ⊗ denotes the operation of inner product.
The introduction of attention between the sample feature vector

and the center vectors of different abnormal modes makes the samples
closer to the center of the abnormal mode more likely to be identified
as abnormal conditions, thus improving the recall rate of abnormal
condition prediction. After that, the 𝐾 attention values {𝑎1, 𝑎2,… , 𝑎𝐾}
are concatenated to , and a linear transformation on  is performed to
obtain  ∗ with the same dimension as ℎ. Then, the normalized result
of the sum of feature ℎ and  ∗ is input into an FNN. This FNN contains
two pairs of FC + Dropout layers, and the last FC layer has only one
neural cell. Finally, the binary classification result 𝑝 can be obtained
by the SoftMax activation layer. Similar to the proposed Conv-LSTM
module, the BCE loss of 𝐿 training samples between the prediction
result 𝑝 and the class label 𝑦 is used to train the APA module as follows:

𝐴𝑃𝐴 = 𝐵𝐶𝐸(𝑦, 𝑝) = − 1
𝐿

𝐿
∑

𝑙=1

[

𝑦𝑙 log(𝑝𝑙) + (1 − 𝑦𝑙) log(1 − 𝑝𝑙)
]

. (18)

4.6. Model training of AEW-AOC framework

These three parts, SCD, Conv-LSTM, and APA modules, compose the
complete AEW-AOC framework. As shown in Algorithm 2, the model
training process of the whole AEW-AOC framework is divided into three
stages. Specifically, in the first stage, the SCD module, i.e., 𝑓 ∶ 𝑋 → 𝑋
𝛩
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Fig. 5. Illustration of the proposed abnormal pattern attention (APA) module, where  = {𝑜1 , 𝑜2 ,… , 𝑜𝐾} and  = {𝑤1 , 𝑤2 ,… , 𝑤𝐾} are the center vectors and corresponding trade-off
weights of 𝐾 abnormal conditions patterns. The ⊕ and ⊗ denote the operations of vector addition and inner-product, respectively.
is trained by auto-encoder unsupervised learning. Thus, the optimal
parameters 𝛩1 for the SCD module can be obtained by Stochastic
Gradient Descent (SGD) [40] optimizer as follows:

𝛩1 = argmin
𝛩

𝑆𝐶𝐷. (19)

In the second stage, both SCD and Conv-LSTM (𝑓𝛷 ∶ 𝑋 → ℎ)
modules are utilized to predict operation conditions. Then, based on
the optimized 𝛩1, the updated 𝛩2 and the optimal parameters 𝛷1 for
the Conv-LSTM module can be obtained by SGD optimizer as follows:

𝛩2, 𝛷1 = arg min
𝛩1 ,𝛷

𝐶𝐿𝑆𝑇𝑀 . (20)

After that, the SCD and Conv-LSTM modules are trained by SGD
optimizer simultaneously, as well as update 𝛩3 and 𝛷2 again as follows:

𝛩3, 𝛷2 = arg min
𝛩2 ,𝛷1

(𝐶𝐿𝑆𝑇𝑀 + 𝜆1𝑆𝐶𝐷), (21)

where 𝜆1 is the manually set trade-off weight for these two loss terms.
In the final stage, the complete AEW-AOC framework (𝑓𝛩, 𝑓𝛷,

and 𝑓𝛹 ∶ ℎ,, → 𝑝) is trained to predict operation conditions.
The trained SCD and Conv-LSTM with optimal parameters 𝛩3 and 𝛷2
extract the deep latent features of all conditions samples 𝑯 . Then,
according to the calculation procedures in Algorithm 1, the center
vectors  = {𝑜1, 𝑜2,… , 𝑜𝐾} and corresponding trade-off weights  =
{𝑤1, 𝑤2,… , 𝑤𝐾} of 𝐾 abnormal conditions patterns for the training of
APA module are obtained. Similarly, based on the optimized 𝛩3 and
𝛷2, the updated 𝛩4 and 𝛷3 and the optimal parameters 𝛹 for the APA
module can be obtained by SGD optimizer as follows:

𝛩4, 𝛷3, 𝛹1 = arg min
𝛩3 ,𝛷2 ,𝛹

𝐴𝑃𝐴. (22)

After that, the SCD and APA modules are trained simultaneously, as
well as update all parameters of the complete AEW-AOC framework as
follows:

𝛩∗, 𝛷∗, 𝛹∗ = arg min
𝛩4 ,𝛷3 ,𝛹1

(𝐴𝑃𝐴 + 𝜆2𝑆𝐶𝐷), (23)

where 𝜆2 is also the manually set trade-off weight.
In this paper, the proposed AEW-AOC framework reformulates the

early warning of AOC as a simple binary classification task, i.e., directly
recognizing whether abnormal conditions will occur in the future time
window according to the final predictive value 𝑝 of the proposed AEW-
AOC framework. Specifically, a step function 𝑓𝑠𝑡𝑒𝑝(⋅) is used to convert
the prediction value 𝑝 into one-hot results as follows:

𝑦′ = 𝑓𝑠𝑡𝑒𝑝(𝑝 − 𝑝0) =

{

1, 𝑝 ≥ 𝑝0
0, 𝑝 < 𝑝0

(24)

where 𝑝0 is a manually set probability threshold. Unlike most common
binary classification models, which set the probability threshold 𝑝 as
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0

0.5, the appropriate threshold is found by drawing the training set’s
Precision–Recall (P–R) curve. A more detailed study of the probability
threshold 𝑝0 will be given in Section 5.

5. Results and discussion

To demonstrate the effectiveness and efficiency of the proposed
AEW-AOC framework, extensive experiments on the collected datasets
are conducted. The proposed AEW-AOC framework is implemented by
PyTorch, and all the experiments are conducted on Nvidia GeForce
RTX 2080 Ti GPU with 11 GB memory. The training convergence
time for the proposed AEW-AOC framework is 16.5 min, while the
test calculation time was 3.748 s, which meets the requirements of
the industry. The experimental setup, including dataset preparation,
evaluation metric, and implementation details, is first introduced in
Section 5.1. Then, the comparative results of the proposed AEW-AOC
framework and other machine-learning methods for the early warning
of AOC are presented in Section 5.2. Finally, several ablation experi-
ments to evaluate the advantages of each sub-module in the proposed
AEW-AOC framework are conducted. Specifically, the effect analysis
in noise reduction of the proposed SCD module, analysis in time-
varying feature representation of the proposed Conv-LSTM module, and
analysis in abnormal patterns extraction of the proposed APA module
are presented in Subsections 5.3, 5.4, and 5.5, respectively.

5.1. Experimental setup

(1) Dataset Preparation. The dataset used in this paper is col-
lected from the FCCU of a refinery. The FCCU adopts the Distributed
Control System (DCS) [41] for real-time monitoring of operation con-
ditions, and the process parameters are stored in ASPEN IP21 real-time
database [42] after real-time data processing. Considering that the data
collected by DCS can reflect the process level and production capacity
of a petrochemical enterprise, two kinds of desensitization for these
sensitive data are carried out as follows:

• Numerical Desensitization. Performing the Z-score transforma-
tion, i.e., 𝑥 = (𝑥−𝜇)∕𝜎, where 𝜇 and 𝜎 are the mean and standard
deviation, on each process parameter to conceal the true scale
information of the original data while retaining the linear change
rule of the original data.

• Time Desensitization. Changing the original time stamp to a
time count that increases from zero, and the unit interval between
times is five minutes.

In this paper, 216 process parameters across 19,079 consecutive
times are collected and sorted out. A time window with a length of
66 slide intercepts the process parameters with a time span of 19,079,
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Fig. 6. Illustration of three kinds of abnormal operation conditions used in this paper,
where the blue dots indicate the normal process parameters and the red dots indicate
the abnormal process parameters.

and 19,014 (19079 − 66 + 1 = 19014) samples are obtained in total.
For each sample, the process parameters of the previous 54 times are
used as input data to predict whether there will be LIC201 high-level
anomaly, LIC202 low-level anomaly, or LIC801 high-level anomaly in
the next 12 times. That is, 𝑁 = 216, 𝑀 = 54, and 𝑋 ∈ R216×54. The
19,014 process parameters samples are split into the training set and
test set in chronological order, using the first 15,000 samples as the
training set and the remaining 4,014 samples as the test set.

For model training and evaluation, three common abnormal con-
ditions: LIC201 high-level anomaly (tower-201 bottom liquid con-
trol), LIC202 low-level anomaly (tower-202 upper liquid control), and
LIC801 high-level anomaly (seal oil volume-206 liquid level control)
are focus on. Fig. 6 illustrates the three types of anomalies, with the red
dots representing high-level abnormal conditions above the dotted lines
and low-level abnormal conditions below the dotted lines. The collected
datasets, as shown in Fig. 6, exhibit notable characteristics such as high
noise, irregular time delays, and sample imbalance issues. Among them,
the times of occurrence of LIC201 high-level anomaly, LIC202 low-
level anomaly, and LIC801 high-level anomaly are 356, 383, and 329,
respectively. Noting the early warning of these three types of anomalies
are regarded as three independent binary classification tasks. Thus, the
proposed AEW-AOC framework uses these 15,000 process parameters
samples with different class labels. Table 1 shows the statistics of these
three types of anomalies.

(2) Evaluation Metric. The metrics of Receiver Operating Char-
acteristic (ROC) and Area Under Curve (AUC) are often used in the
validation of probabilistic regression machine learning models. In the
9

Table 1
Statistics of three types of abnormal conditions.

Class label LIC201 LIC202 LIC801

Training Set (15,000) normal 14,379 14,654 14,679
abnormal 621 346 321

Test Set (4,014) normal 3,884 3,812 3,890
abnormal 130 202 124

Table 2
Main network structures in AEW-AOC framework.

Sub-Module Network Hyper-Parameters

SCD MHAM head number: 4

FNN node number: {64, 148}

Conv-
LSTM

CNN kernel size: {7, 5, 3}
channel number: {4, 4, 4}

LSTM node number: {64, 32}

FNN node number: {512, 256, 1}

APA FNN node number: {19, 1 }
Dropout: 0.2

practical industry scenario, high performance is not restricted to only
the high True Positive Rate (TPR) to avoid great damages caused by
missing alarms, but includes also the low False Positive Rate (FPR) to
avoid the resource waste caused by false alarms. Therefore, the model
is evaluated by measuring 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 and 𝑅𝑒𝑐𝑎𝑙𝑙 as follows:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

, 𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

, (25)

where 𝑇𝑃 , 𝐹𝑃 , and 𝐹𝑁 denote the true positives, false positives,
and false negatives, respectively. After having computed the values of
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 and 𝑅𝑒𝑐𝑎𝑙𝑙, the 𝑓𝛽 score also computed as a evaluation metric:

𝑓𝛽 =
1 + 𝛽2

𝛽2
𝑅𝑒𝑐𝑎𝑙𝑙 +

1
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

=
(1 + 𝛽2) ⋅ 𝑅𝑒𝑐𝑎𝑙𝑙 ⋅ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
𝛽2 ⋅ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

. (26)

The 𝑓𝛽 proposed in [43] is a performance metric commonly used in
binary classification tasks, which considers both precision and recall,
where 𝛽 controls the trade-off between 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 and 𝑅𝑒𝑐𝑎𝑙𝑙. To pri-
oritize the significance of detecting potential risks and mitigate the
consequences of missing alarms, a higher weight to the 𝑅𝑒𝑐𝑎𝑙𝑙 than
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 is assigned during the model evaluation. In close commu-
nication with refinery customers, the value of 𝛽 is set to 5, reflecting
their preference for emphasizing recall over precision. Although it may
result in a higher rate of false positives, the refinery customers prioritize
capturing all possible instances of abnormal behavior, even at the
expense of some false alarms. Overall, the 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛, 𝑅𝑒𝑐𝑎𝑙𝑙, and 𝑓𝛽 are
chosen as the evaluation criteria and not 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (𝑇𝑃 +𝑇𝑁)∕(𝑇𝑃 +
𝑇𝑁+𝐹𝑃 +𝐹𝑁) because in 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 if the True Negatives (TN), i.e., the
recognition accuracy of normal class, is much higher, it affects the
overall results significantly. Instead, the aim is high accuracy in both
abnormal and normal classes, especially in abnormal classes.

(3) Implementation Details. The main network structures of the
three sub-modules in the AEW-AOC framework are summarized in
Table 2, where the MHAM denotes the multi-head attention module
in the proposed SCD module. In the MHAM of time-view and space-
view, the hyper-parameters used are the same, and the number of heads
equals to 4. In this paper, the hyper-parameters of 𝐾∗, 𝛼, 𝜂, 𝜀, and 𝐼𝑡𝑟
used in the APA module and mentioned in Algorithm 1 are set as 7, 0.7,
20, 0.0001, and 500, respectively. In the second stage of model training,
the tradeoff weight 𝜆1 in Eq. (21) is set as 0.1. In the third stage of
model training, the tradeoff weight 𝜆2 in Eq. (23) is set as 0.15.

Moreover, in order to improve the generalization ability of the
proposed AEW-AOC framework, the parameters of the complete AEW-
AOC framework are fine-tuned by splitting the training samples into
the training set and validation set according to the ratio of 17 ∶ 3 in the
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Fig. 7. The 𝐴𝑃𝐴 on the training and validation set of LIC201 varying with the number
of iterations.

final stage of model training. Specifically, the feed-forward operation
of the proposed AEW-AOC framework is performed on the randomly
selected validation set. Then, the loss of the APA module and all net-
work parameters are recorded as ′

𝐴𝑃𝐴 and {𝛩′, 𝛷′, 𝛹 ′}, respectively.
After that, 𝐼𝑡𝑟𝑣 round of iterative training is carried out for the complete
AEW-AOC framework on the training set, and the new loss of the APA
module and new network parameters on the validation set are denoted
as 𝑣

𝐴𝑃𝐴 and {𝛩𝑣, 𝛷𝑣, 𝛹𝑣}, respectively. If the value of 𝑣
𝐴𝑃𝐴 is less than

′
𝐴𝑃𝐴, update ′

𝐴𝑃𝐴 by 𝑣
𝐴𝑃𝐴 and record the corresponding parameters

{𝛩𝑣, 𝛷𝑣, 𝛹𝑣}. Until the loss of the complete AEW-AOC framework on
the training set converges, the network parameters corresponding to
the minimum loss ′

𝐴𝑃𝐴 on the validation set are used as the fine-tuned
network parameters. As shown in Fig. 7, the blue line and orange line
are the 𝐴𝑃𝐴 losses on the training set and validation set of LIC201
dataset varying with the number of iterations, respectively. As shown
in Fig. 7, in the first 230 iterations, the loss values of the training set
and validation set show a downward trend. Starting from the 230th
iteration, the loss value on the training set continues to decay, while the
loss value of the validation set starts to oscillate significantly. Finally,
the network parameters corresponding to the minimum loss value on
the verification set are chosen as the network parameters for testing.
Training on the validation set, the generalization ability of the proposed
AEW-AOC framework can be further improved.

5.2. Comparative results

Considering that existing methods for anomaly early warning in
FCCU, e.g., DL-SDG [5] and LSTM-GRU [23], have primarily been
designed and validated for regression tasks, a direct comparison with
them is not conducted in this paper. However, it is worth noting that
most of them incorporate the LSTM, CNN, or attention mechanisms. As
a result, the models such as Binary directional LSTM (Bi-LSTM), Conv-
LSTM, and the SCD with Conv-LSTM modules of AEW-AOC framework
are chosen as representatives. Additionally, the AEW-AOC framework
with Random Forest (RF)[44] and Conv-LSTM with Average Filter (A.F.)
are also compared. Among them, the weight of abnormal samples and
normal samples is set as 3:1 in the RF regression training. The Conv-
LSTM with A.F. means that the sample data is smoothed with the
average filter before being input into the Conv-LSTM, where the width
of the smoothing window is set as 9. Table 3 reports the comparison re-
sults of the prediction of abnormal conditions on the evaluation criteria
of 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛, 𝑅𝑒𝑐𝑎𝑙𝑙, and 𝑓𝛽 on LIC201, LIC202, LIC801 datasets. It is
highlighted that the proposed AEW-AOC framework achieves the best
performance on the test sets of three datasets. In terms of the 𝑓𝛽 , 91%
on LIC201, 90.45% on LIC202, and 90.64% on LIC801 are achieved.
In terms of the 𝑅𝑒𝑐𝑎𝑙𝑙, the AEW-AOC framework also outperforms all
other competitors, including 95.38% on LIC201, 93.56% on LIC202,
and 94.35% on LIC801, respectively.
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These improvements are contributed to the collaboration of the
SCD module, Conv-LSTM module, and APA module in the proposed
AEW-AOC framework. The SCD module based on the self-attention
mechanism is able to learn the spatio-temporal correlation of various
process parameters, and maintain the physical meaning of each process
parameter while reducing noise. From the comparison results between
Conv-LSTM and SCD + Conv-LSTM, the proposed SCD module greatly
improves the 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 without reducing 𝑅𝑒𝑐𝑎𝑙𝑙, and the SCD + Conv-
LSTM method achieves 5.9%, 5.38%, and 3.08% improvements over
the Conv-LSTM method on LIC201, LIC202, LIC801 datasets in terms
of 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛. From the comparison results between Conv-LSTM with A.F.
and SCD + Conv-LSTM, the average filter can reduce noise in a certain,
but it also ignores some local features, which further demonstrates the
superiority of the proposed SCD module.

The introduced Conv-LSTM is able to extract the time-varying fea-
tures which weakens the influence of strong hysteresis. Compared with
the RF as the baseline model, the methods based on LSTM, e.g., Bi-
LSTM and Conv-LSTM, have significantly better results, which indicates
that the LSTM can effectively extract the temporal and spatial correla-
tion of the condition samples. Moreover, from the comparison results
between Bi-LSTM and Conv-LSTM, the multi-channel convolutional
layer can capture some local features related to the prediction results.
In terms of the 𝑓𝛽 , the complete AEW-AOC framework composed of
SCD + Conv-LSTM and APA module achieves 4.96%, 2.65%, and 4.81%
improvements over the SCD + Conv-LSTM method on LIC201, LIC202,
LIC801 datasets, respectively. The performance boost of the proposed
APAmodule can be analyzed from one aspect. The introduce of the APA
module based on clustered abnormal patterns and attention mechanism
strengthens the latent representation related to abnormal conditions, so
as to better distinguish between abnormal and normal conditions, then
the class imbalance problem is well solved.

As shown in Table 4, these methods on the training set of the
LIC201 dataset are also compared to demonstrate the effectiveness
and efficiency of the proposed AEW-AOC framework. In addition, the
precision–recall curves on the training set and test set of the LIC201
dataset are also drawn in Fig. 8. As shown in Table 4, compared with
the Conv-LSTM method, the effect of the SCD + Conv-LSTM method
on the training set of LIC201 is slightly reduced, but the effect on
the test set is significantly improved, which demonstrates that the
SCD module is helpful to mitigate overfitting and improve the model
generalization ability. As shown in Table 4 and Fig. 8, the RF method
achieves the best results on the training set of the LIC201 dataset on
all evaluation criteria, but the worst results on the test set. Compared
with the extremely contrasting results obtained by the FR method in the
training set and test set, i.e. the overfitting result, the proposed AEW-
AOC framework performs well in both the training set and test set,
indicating the generalization ability and fitting ability of the method.

5.3. Effect analysis of the SCD module

The proposed SCD module can fully extract the features of process
parameters at different times in each FCCU process, and realize noise
reduction based on the learned spatio-temporal correlation of various
process parameters. In order to verify the noise reduction effect of the
proposed SCD module, the prediction effects of the SCD + Conv-LSTM
are compared with Conv-LSTM and Conv-LSTM with A.F. methods on
the training set and test set of LIC201 dataset. As the precision–recall
curve on the training set and test set of the LIC201 dataset shown in
Fig. 8, the effect of the Conv-LSTM method (green line) on the training
set is better than that of the Conv-LSTM with A.F. method (red line).
However, compared with the Conv-LSTM method, the Conv-LSTM with
A.F. method has a better effect on the test set. The comparison results
of these two methods demonstrate that the generalization ability can
be improved by noise reduction. Compared with these two methods,
the SCD + Conv-LSTM method (purple line) shows better generalization
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Table 3
Comparison results of prediction of abnormal conditions on LIC201, LIC202, LIC801 datasets. The best result is bolded. The 𝑃 , 𝑅, and 𝑓𝛽 refer
to the evaluation criteria of 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛, 𝑅𝑒𝑐𝑎𝑙𝑙 and 𝑓𝛽 score, respectively.

Method LIC201 (%) LIC202 (%) LIC801 (%)

𝑃 𝑅 𝑓𝛽 𝑃 𝑅 𝑓𝛽 𝑃 𝑅 𝑓𝛽
RF 25.67 81.54 75.24 27.30 80.69 75.45 25.26 79.84 73.71
Bi-LSTM 50.46 84.62 82.47 56.81 84.65 83.08 49.05 83.06 80.91
Conv-LSTM 52.56 86.92 84.79 53.01 87.13 85.03 50.96 85.48 83.31
Conv-LSTM with A.F. 55.12 86.92 85.04 56.55 87.62 85.81 52.74 85.48 83.49
SCD+Conv-LSTM 𝟓𝟖.𝟒𝟔 87.69 86.04 𝟓𝟖.𝟑𝟗 89.60 87.80 𝟓𝟒.𝟎𝟒 86.29 85.83

AEW-AOC 42.32 𝟗𝟓.𝟑𝟖 𝟗𝟏.𝟎𝟎 49.34 𝟗𝟑.𝟓𝟔 𝟗𝟎.𝟒𝟓 45.70 𝟗𝟒.𝟑𝟓 𝟗𝟎.𝟔𝟒
Table 4
Comparison results of prediction of abnormal conditions on the training set and test set of LIC201.

Method Training set (%) Test set (%)

𝑃 𝑅 𝑓𝛽 𝑃 𝑅 𝑓𝛽
RF 𝟖𝟓.𝟗𝟗 𝟗𝟗.𝟖𝟒 𝟗𝟗.𝟐𝟐 25.67 81.54 75.24
Bi-LSTM 52.97 89.05 86.78 50.46 84.62 82.47
Conv-LSTM 55.30 92.43 90.10 52.56 86.92 84.79
Conv-LSTM with A.F. 59.62 89.86 88.14 55.12 86.92 85.04
SCD+Conv-LSTM 49.66 95.17 91.93 𝟓𝟖.𝟒𝟔 87.69 86.04

AEW-AOC 57.37 94.04 91.79 42.32 𝟗𝟓.𝟑𝟖 𝟗𝟏.𝟎𝟎
Fig. 8. Precision–recall curve of all comparison methods in the high-level anomaly prediction of LIC201 dataset.
Fig. 9. Effect of two noise reduction methods on the process parameters in the LIC201
dataset.
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ability, which proves that the noise reduction effect of the proposed
SCD module is better than that of the average filter.

Fig. 9 intuitively shows the noise reduction effect of the average
filter and the proposed SCD module on the process parameter data in
the LIC201 dataset. In Fig. 9, the gray lines are the original process
parameters before noise reduction, as well as the blue line and red
line represent the values after noise reduction using average filter and
SCD methods, respectively. As shown in Fig. 9, the proposed SCD
module and the average filter can both smooth the original sharp
fluctuation process parameters, and further realize the noise reduction.
In addition, it is worth mentioning that the proposed SCD module is
able to filter out noise while keeping the local variation characteristics
of each process parameter as far as possible. These retained local
variation characteristics are of great significance in the later Conv-LSTM
module, which can help extract some typical features that will appear
before abnormal conditions, thus improving the accuracy of abnormal
conditions prediction.

5.4. Effect analysis of the Conv-LSTM module

The multi-channel convolutional layer in the introduced Conv-LSTM
module can extract the time-varying features of each process param-
eter, and the LSTM can memorize the influence of historical process
parameters on subsequent operating conditions, simultaneously. In or-
der to verify the extraction ability of time-varying features of the
introduced Conv-LSTM module, the prediction effects of the Conv-LSTM
with Bi-LSTM are mainly compared on the training set and test set
of LIC201 dataset. As shown in Fig. 8, the effects of the Conv-LSTM
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Fig. 10. The visualization of the weight of 1D-Conv kernel with time window length equal to 5 applying to different process parameters.
Fig. 11. Headmap of convolution weights of LIC202, FIC903, LIC106, LIC201, LIC604,
and LIC205.

method (green line) on the training set and test set are better than
that of the Bi-LSTM method (orange line). The comparison results
between Conv-LSTM and Bi-LSTM prove that the introduction of the
convolutional layer can enhance LSTM’s ability to extract local fea-
tures of process parameters, which are important omens of abnormal
conditions. To further prove the local feature extraction ability of the
proposed Conv-LSTM module, the convolution operations in terms of
the visualization of 1D-Conv kernel, heatmap of convolution weight,
and line chart corresponding to the heatmap are analyzed.

The 1D-Conv is often used for feature extraction of time series data.
By moving in the time direction, the time-varying features of process
parameters can be extracted by the 1D-Conv. Given a 1D-Conv kernel,
the fragments of process parameters consistent with the changes of
convolution kernel elements will get the maximum gain. Therefore,
by visualizing the weight of the convolution kernel, the local features
extracted by 1D-Conv can be observed. Fig. 10 visualizes the trained
weight of a 1D-Conv kernel with the time window length equal to
5 applying to different process parameters. In Fig. 10, each column
is a process parameter with the time window length equal to 5, and
each row represents the relative position in the convolution window.
The darker the color, the greater the absolute value of the convolution
kernel, and the weight range is [−1, 1]. As shown in Fig. 10, the trained
weight values of the 1D-Conv kernel corresponding to most process
parameters are relatively small. Only the absolute values of the six
process parameters, i.e., the LIC202, FIC903, LIC106, LIC201, LIC604,
and LIC205, are greater than 0.3.

To more intuitively feel the representation ability of the proposed
Conv-LSTM model to the time-varying features, The heatmap and bro-
ken line charts are also applied to visualize the convolution weights of
these six process parameters, i.e., the LIC202, FIC903, LIC106, LIC201,
LIC604, and LIC205, in Figs. 11 and 12, respectively. It is worth
noting that in the experiment based on LIC201 dataset, the high-level
anomaly prediction of LIC201 according to different process parameters
12
Fig. 12. Broken line charts of convolution weights of LIC202, FIC903, LIC106, LIC201,
LIC604, and LIC205.

is realized. Figs. 11 and 12 reflect a group of features strongly related
to the abnormal conditions. Specifically, as shown in Fig. 12, within a
time window, LIC201 (the red broken line) maintains at a high level
and slowly rises, LIC205 (liquid level control value of No. 201 vessel)
and LIC604 (liquid level control value of No. 2 vessel) increase first
and then decrease in a parabolic manner, LIC106 (material level of the
second regenerator) maintains at a high level, and LIC202 (upper liquid
level control value of No. 202 tower) fluctuates significantly.

Moreover, the correlation 𝑟 between the convolution kernel  and
the noise reduction output ̂ of the trained SCD module is calculated
as follows:

𝑟 =

∑𝐻𝑀
𝑖=1

∑𝑊𝑀
𝑗=1 (̂𝑖,𝑗 ⋅𝑖,𝑗 )

√

∑𝐻𝑀
𝑖=1

∑𝑊𝑀
𝑗=1 ̂2

𝑖,𝑗 ⋅
√

∑𝐻𝑀
𝑖=1

∑𝑊𝑀
𝑗=1 2

𝑖,𝑗

, (27)

where 𝐻𝑀 and 𝑊𝑀 are the width and height of the convolution kernel
, respectively. The 𝑖,𝑗 and ̂𝑖,𝑗 are the values of 𝑖th row and 𝑗th
column of the convolution kernel  and the noise reduction output ̂ ,
respectively.

As shown in Table 1, there are 751 (621 + 130) abnormal samples
and 18,263 (14379+3884) normal samples in the LIC201 dataset. Then,
in the experiment of LIC201 abnormality detection, there are 116
normal samples whose correlation 𝑟 with the convolution weight matrix
 is greater than 0.75. While there are 103 abnormal samples whose
correlation with the matrix is greater than 0.75. That is, the frequency
of 𝑟 > 0.75 in abnormal samples (103/751 = 0.137) is much higher than
that in normal samples (116/18263 = 0.006). The experimental result
demonstrates that the introduced 1D-Conv in the proposed Conv-LSTM
module can effectively extract the difference between normal samples
and abnormal samples in local changes, and provide an important basis
for the subsequent classification.

5.5. Effect analysis of the APA module

The cluster and attention-based APA module can mitigate the class
imbalance problem by extracting the discriminative features of abnor-
mal conditions. In order to analyze the effect of the proposed APA
module more clearly, the effect of AEW-AOC framework with SCD +
Conv-LSTM method is separately compared on the LIC201 dataset. As
shown in Fig. 8(a), there is no obvious difference in the training set
between the SCD + Conv-LSTM method (purple line) and the AEW-AOC
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framework (brown line). As shown in Fig. 8(b), in the test set of LIC201
dataset, compared with the SCD + Conv-LSTM method (purple line),
the precision of the AEW-AOC framework (brown line) decreases faster

ith the increase of recall rate. Noting that the APA module in the
roposed AEW-AOC framework combines the output 𝒉 of Conv-LSTM
ith the attention of different abnormal pattern centers. However,

he combination may result in the features of some normal samples
eing mapped near the abnormal pattern. Then, these normal samples
re easy to be incorrectly recognized as abnormal conditions, thus
educing the precision. Noting that the recall rate of the proposed
EW-AOC framework will increase rapidly within the range of small
hange in precision. In addition, the recall rate of AEW-AOC framework
s significantly higher than that of SCD + Conv-LSTM method since
he precision rate is reduced to about 0.5. The experimental results
rove that the proposed APA module is helpful to improve the recall of
bnormal conditions.

. Conclusion

This paper proposes a universal attention-based early warning frame-
ork for AOC with application in FCCU. In view of these three chal-

enges, the proposed AEW-AOC framework contains three parts. The
CD can learn the spatiotemporal correlation of various process pa-
ameters for noise reduction. The Conv-LSTM can mitigate the strong
ysteresis problem by extracting the time-varying features of each
rocess parameter in the local time window. The APA module solves
he class imbalance problem by strengthening the latent representation
elated to abnormal conditions to better distinguish between abnormal
nd normal conditions. Extensive experimental results on the process
arameters dataset of a refinery demonstrate the effectiveness and su-
eriority of the proposed AEW-AOC framework, especially in practical
pplications. For future work, it is worth investigating the decision-
aking methods. According to the prediction results of abnormal

onditions, the controllable operating variables can be intelligently
odified to eliminate the hidden dangers of abnormal conditions in

ime. Furthermore, there are plans to conduct further analysis on the
auses of abnormal conditions in order to minimize their occurrence in
hemical plants.
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