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Artificial Intelligence Methods Applied to Catalytic Cracking Processes
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Abstract: Fluidic Catalytic Cracking (FCC) is a complex petrochemical process affected by many highly non-linear
and interrelated factors. Product yield analysis, flue gas desulfurization prediction, and abnormal condition warning
are several key research directions in FCC. This paper will sort out the relevant research results of the existing
Artificial Intelligence (Al) algorithms applied to the analysis and optimization of catalytic cracking processes, with a
view to providing help for the follow-up research. Compared with the traditional mathematical mechanism method,
the Al method can effectively solve the difficulties in FCC process modeling, such as high-dimensional, nonlinear,
strong correlation, and large delay. Al methods applied in product yield analysis build models based on massive
data. By fitting the functional relationship between operating variables and products, the excessive simplification of
mechanism model can be avoided, resulting in high model accuracy. Al methods applied in flue gas desulfurization
can be usually divided into two stages: modeling and optimization. In the modeling stage, data-driven methods
are often used to build the system model or rule base; In the optimization stage, heuristic search or reinforcement
learning methods can be applied to find the optimal operating parameters based on the constructed model or rule
base. Al methods, including data-driven and knowledge-driven algorithms, are widely used in the abnormal condition
warning. Knowledge-driven methods have advantages in interpretability and generalization, but disadvantages in

construction difficulty and prediction recall. While the data-driven methods are just the opposite. Thus, some studies

combine these two methods to obtain better results.
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1 Introduction

With the aggravating trend of heavier and deteriorated
of the crude oil, Fluid Catalytic Cracking (FCC), one of
the key processes for processing heavy oil, has attracted
more and more attention. FCC is a series of chemical
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reactions dominated by cracking reactions of heavy oil
that occur at about 500 C and 1x105~3x105 Pa in the
presence of acid catalysts. The reactions mainly produce
light oil, gas and coke. In China, diesel and gasoline
produced by Fluid Catalytic Cracking Units (FCCU)
account for about 30% and 70% of the total diesel and
gasoline product, respectively. FCC has become one of
the most important methods for heavy oil processing!! .

FCC is one of the most complicated processes
in process industry. At present, the methods for
process analysis of FCCU can be roughly divided
into mathematical model based methods and artificial
intelligence based methods!>!. Molecular scale kinetic
mode!® and lumped kinetic model” are typical
mathematical model based methods. They have been
widely studied in the field of FCC process analysis.
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On the basis of the description of the process principle
and its physical and chemical processes, these methods
calculate the change trend of the target to be analyzed
by constructing a differential equation model. Restricted
by the complexity of modeling, this kind of methods can
only use a small number of process parameters, leading
to low accuracy, so that there are large errors in practical
application.

With the increasing automation control level of
the industrial production process and the continuous
improvement of the process control system, the recorded
data and operating condition parameters of the process
equipment can be obtained in real time from the
database platform of the unit!®/. These data record the
characteristics and performance of the FCCU, reflecting
the essence of the production system, which provide a
foundation for the application of Artificial Intelligence
(AD) in FCCP!. 1In recent years, Al-based methods
have shown strong advantages. In addition to the
Internet!!% 1 they have also played an important role
in education!!?!, transportation''?!, medical care!'*! and
smart cities!'¥.  Also, more and more Al methods
have been applied to the analysis of FCC process!> !9,
The FCC analysis method based on Al will become a
research focus.

High efficiency, environmental sustainability, and
safety are the three core objectives in the process
industry!'”!. In the FCC, product analysis and
optimization, Flue Gas Desulfurization (FGD) analysis
and optimization, and early warning and diagnosis
of abnormal condition are the research emphases
and hotspots in the direction of high efficiency,
environmental protection, and safety. In this paper, we
provide a review of the application of Al method in the
FCC analysis from three aspects: product analysis and
optimization, FGD analysis and optimization, and early
warning and diagnosis of abnormal condition, hoping to
provide possible help for future research.

2 FCC Product Analysis and Optimization

FCC is a complex process influenced by many highly
nonlinear and strongly interrelated factors. In this
process, many factors, including the nature of feed
oil, the nature of reaction regeneration catalyst, and
the conditions of reaction, will affect the quality and
yield of product. The mathematical modeling analysis
of the process oriented to the product quality or yield of
the catalytic cracking unit has always been a focus and
challenge in the field of petroleum processing!'3 11,
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The traditional methods of FCC analysis are mainly
based on mathematical model?*2!!, That is, the process
principle and its physical and chemical processes
are described by mathematical formulas, which can
effectively reflect the transfer and reaction laws of the
process. Mathematical model based methods have
the characteristics of clear engineering background,
strong interpretability, and strong traceability, mainly
including analysis methods, such as correlation mode!??,
lumped kinetic model!®}!, and molecular scale dynamics
model>*!. Since the raw materials and product of the
FCC are complex mixtures composed of a large number
of hydrocarbons and non-hydrocarbons, the process
involves a large number of complex reaction systems.
Considering the complexity of the model establishment
and its practicality in industry, the lumped kinetic model
is the most commonly used method for mechanism
analysis.

Mathematical model based methods often need to
make idealized and simplified assumptions, ignoring
some secondary factors selectively, which will lead to
the loss of model accuracy. And the accumulation of the
simplification of a single reaction unit is easy to cause the
error to be amplified step by step, which makes it difficult
to guarantee the convergence and stability of the whole
system model. In addition, due to the poor timeliness
and long cycle of lumped modeling, it is impossible to
update and analyze the process status in real time!?!,

With the development of advanced sensor and
database technology, a large number of production
process data can be collected into the real-time
database. These data recording the characteristics,
performance, and changes of the chemical process,
are a comprehensive and detailed description of the
chemical process, which could provide favorable
conditions for the data-driven methods. Data-driven
methods represented by AI methods directly build
models based on massive data. With the development
of Al and the proposal of “Industry 4.0, more and
more Al technologies are introduced into the modern
industry chain to improve production efficiency, reduce
operation cost, improve operation safety, and realize
risk avoidance. Meanwhile, Deep Learning (DL), as
an important technology of Al, has made amazing
progress in theoretical and applied research in the
industry, which vigorously promotes the development
of informatization, digitization, and intelligence of the
modern industry®®!. By fitting the functional relationship
between operating variables and product, these methods
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can analyze the reaction process and its influence
mechanism from multiple angles in an all-round way,
avoiding the over simplification of a large number of
factors in the mechanical modeling and finding the
relationship between the input and output of system
process when the process mechanism is unknown or
too complex. Appropriate machine learning methods
can effectively solve the problems of high dimension in
chemical process, strong correlation of influence factors,
nonlinearity, time-varying, lagging, and uncertainty,
thereby obtaining high-precision prediction results,
which have shown great advantages in chemical process

modeling!?7->%!,

2.1 Machine learning approaches

Statistical learning based methods are called traditional
machine learning methods. Multiple linear regression is
one of the simplest traditional machine learning methods.
It uses multiple linear functions as hypothetical functions
and solves the coefficients of hypothetical functions
by least squares. Multiple regression is widely used
in modeling simple chemical processes. Wei et al.[*"’
used multiple linear regression to accurately predict
the quality of chemical product. Lv et al.l®!l used
multiple linear regression to predict chemical product.
Gmeinbauer et al.l*?! used multiple linear regression to
predict the product distribution of gasoline and liquefied
gas in FCCU.

Compared with the multiple linear regression,
Bayesian regression can improve the accuracy
and generalization of chemical process models by
introducing appropriate prior distribution'*3!. Support
Vector Regression (SVR) finds a hyperplane that
minimizes the maximum distance to all samples under
the constraint that the error between the regression
prediction value and the sample annotation value is
small enough. Sun et al.** used SVR to model catalytic
cracking product, and found a series of optimized
conditions that can improve the yield. Roy et al.[?*
used multiple regression and SVR separately to predict
methane content in natural gas.

FCC is a complex chemical process with highly
nonlinear characteristics. Therefore, processing FCC
directly with a linear model always gets poor results,
while nonlinear models tend to get better results. On
the one hand, a linear model can be transformed into a
nonlinear model by introducing a kernel function. Roy et
al.® introduced a polynomial kernel into SVR, which

makes the prediction accuracy increase from 40% to
52%. And after using Gaussian kernel, the accuracy
reaches 98%. The use of kernel functions based on
dimension reduction, such as kernel PCAP! and kernel
Partial Least Squares (PLS)?*%!, can bring significant
performance improvement in chemical process modeling.
On the other hand, nonlinear machine learning models
can be directly used to fit the relationship between
various influencing factors and production results, such
as polynomial regression*®), C4.5 decision treel*’!,
random forest!®¥!, and Gradient Boosted Decision Tree
(GBDT)*?!, which have been applied in the chemical
process modeling.

The process parameters of FCCU are usually strongly
correlated with each other, so feature engineering
is necessary. The common feature selection methods
include filter, wrapper, and embedding. The filter-
based feature selection method aims to calculate the
importance of features to rank them. The top-ranked
feature variables are usually high-importance features,
while the bottom-ranked feature variables are irrelevant
or less importance features. The filter method selects
features whose importance is greater than a specified
threshold as input variables or selects the top-k features
with the greatest importance (k is a manually set super
parameter). The wrapper-based feature selection method
takes the performance of machine learning model as
the criterion for evaluating the feature subset, and
obtains the target feature subset through continuous
iteration of the search algorithm. Unlike filter and
wrapper, the embedding method integrates feature
selection into the model training of the machine learning
algorithm, that is, the model automatically selects
features during the model training process of the
machine learning algorithm. Correlation analysis is a
popular method to analyze the importance of features in
filtering feature selection. Zhao!*’! combined Pearson
correlation coefficient analysis in SPSS software and
process production experience to filter all variables of
raw oil. In FCCU, regenerant and reaction regeneration
systems are based on the data obtained from data
preprocessing, reducing the complexity of machine
learning models. Wang et al.*!! combined the filter
method with the wrapper method to select features. It
is a data-driven spontaneous feature variable selection
method that does not rely on FCC prior knowledge in
the process of selecting input variables. This method
used the production data of the FCCU to select the
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input variables for the prediction model of dry gas and

coke yield, and proposed a model with high prediction

accuracy and moderate number of input variables.
Embedded selecting of features is included in machine

learning methods, such as GBDT and random forest.

Wang et al.[*?! grouped the features combined with the

expert experience and knowledge of FCC on the basis
of GBDT, and proposed an adaptive feature selecting
method, which effectively improved the generalization
ability of FCCU gasoline yield prediction.

The machine learning based method has been widely
used in the analysis of FCC products, which can
effectively model the FCC process, thereby realizing
the analysis of FCC product yield.

2.2 Neural networks approaches

Compared with machine learning models, neural
networks are more widely used in the modeling of FCC
process because of their powerful fitting ability and
flexible structure. Lv et al.l**! built a neural network
model to predict the product distribution of FCC and
optimized the reaction-regeneration system to obtain
conditions with better product yields. Wang!**! proposed
a prediction model for hydrocracking product yield by
using Back Propagation (BP) neural networks, and under
the guidance of the model prediction results, the process
parameters were optimized and adjusted according to
the actual working conditions. The results show that
the total yield of high-value product has been greatly
improved and greater economic benefits have been
obtained after the optimization and adjustment of the
process parameters.

Jiang et al.[*3! established a neural network prediction
model with 17 input variables based on the Generalized
Regression Neural Networks (GRNNSs) and the adaptive
enhancement algorithm. The results show that the mean
squared error between the predicted gasoline production
and actual production was at a low level. Shang et al.[6!
used the deep neural network to predict the 95% cut-off
point of heavy diesel oil in atmospheric and vacuum
distillation unit. The results show that the prediction
results are closer to the actual values compared with
other data-driven methods.

FCC process analysis is a time series problem, which
is suitable for solving with neural network models
dealing with time series. Long Short-Term Memory
(LSTM) is a recurrent neural network architecture to
deal with time series problems. It introduces gating
mechanisms to better learn the dependencies in time
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series datal*”!.

Ke et al.*¥! proposed an LSTM-based deep neural
network to deal with the strong nonlinearity and
dynamics of chemical processes. The validity of the
model is verified by the benchmark test of the sulfur
recovery unit. Finally, the method was applied to a
practical soft sensing system, and the results show that
the method is particularly suitable for the modeling of
dynamic soft sensing system for coal gasification.

Xu et al.*¥! extracted the time feature of feed oil
properties, catalyst properties, and process parameters of
catalytic cracking unit by using multi-layer Bidirectional
LSTM (Bi-LSTM), which predicted the production
effectively. And an automatic encoding-decoding
method based on the cyclic structure was proposed to
extract valuable features from the data and reduce the
input dimension, and at the same time can effectively
reduce the noise of sensor data acquisition!®"

Neural networks for complex chemical processes
are often high-dimensional nonlinear models. The
nonlinear activation function is introduced to enhance
the fitting ability of the neural networks, but it also makes
the loss function non-convex. For convex optimization
problems, the optimization algorithm can always find
the optimal solution. However, for convex functions
in high-dimensional space, there is little guarantee that
the function will converge to the global optimum as
the gradient close to 0. Even if the loss function only
converges to a local optimal value, the obtained neural
network error is often small. But in high-dimensional
space, it tends to fall into a saddle point when the
gradient of loss function is close to 0, resulting in a
large error®!.

Saddle-Free Newton method (SFN)P!! is proposed
to fits the loss function in the Hessian matrix. An
eigenvalue less than 0 is found, and the saddle point can
be separated along the direction of the corresponding
eigenvector to continue to optimize the loss function.
Because the calculation of Hessian matrix is very large,
SEN is rarely used to optimize the neural networks
of chemical process. Some scholars have used the
Levenberg-Marquardt (LM) training algorithm with
good results, because the LM uses a Jacobian matrix
which is simpler than Hessian, and the calculation
is simpler. Dasila et al.l’?! used the artificial neural
networks, took the conventional properties, such as
density, distillation temperature, Conradson Carbon
Residue (CCR), sulfur, and total nitrogen content, as
inputs, and adopted the LM algorithm to study several
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BP neural networks with different neuron numbers.
By using the ten-lumped kinetic model of the FCCU,
the performance of several different feedstocks and
prediction of the detailed composition of the FCC
feedstock have been successfully simulated.

Using stochastic gradient descent to find the minimum
value of the loss function is very sensitive to the initial
value of the parameters, and inappropriate initial value
will often cause the optimization result to fall into
a saddle point®*!, Applying stochastic optimization
algorithms, such as Genetic Algorithm (GA), Particle
Swarm Optimization algorithm (PSO), and simulated
annealing algorithm to the initial value setting of neural
networks parameters, can efficiently avoid saddle points.

In the process of using the GA to optimize the BP
neural networks (GA-BP), the neural network is the first
to be determined, the network parameters are initialized,
and the initial values of the neural network parameters
are encoded by the GA. Second, the optimal values of
the network parameters are found through operations,
such as selection, crossover, and mutation, until the
constraints are satisfied. Finally, the neural network
parameters are updated according to the optimal values
of the network parameters found by the GA. Figure 1
shows the algorithmic flow diagram of the GA-BP!>4,

The team of professor Ouyang from East China
University of Science and Technology has carried out a
lot of work in analyzing FCC process by using BP neural
networks combined with GAP>™7, Fangl®®! selected
19 variables, including feed oil properties, catalyst
properties, and conditions, as the neural network inputs,
and the yields of liquefied gas, gasoline, diesel oil, and

GA BP neural network
Initialization M Build neural
network
Set train erroras Initialize the
fitness value parameters
Optimize the
paramertes

Crossover

Mutation

Calculate fitness

I

Update parameters

Reach stop
condition
or not

Y
Output

Fig.1 Abstract illustration of GA-BP.

Reach stop
condition
or not

coke as the neural network outputs. They built a GA-
BP to obtain the conditions of the reaction-regeneration
system under the optimal gasoline yield. Zhao!*!
proposed a GA-BP for gasoline yield on all the data
of the MIP device and the data after clustering, and
finally optimized the gasoline yield model. Su et al.’"]
compared the prediction results of BP neural networks
and GA-BP with industrial data separately, showing
that the GA-optimized prediction model has better
results in terms of accuracy and stability. In addition,
the accuracy of the GA-BP was further proved by
investigating the influence of single key parameters, such
as raw material carbon residue and reaction temperature
on coke yield. Wang et al.l®¥l proposed a method
referred FNN-GA that combines the Fuzzy Neural
Network (FNN) with GA to correlate input values, i.e,
raw material components and operating variables, and
output values, i.e., the production of upgraded gasoline
and olefin components therein. And GA was used to
optimize the input of operating variables to maximize
the olefin limited gasoline of different feedstocks. The
experimental results are in good agreement with the
predicted results. The optimized operating conditions
significantly improved the gasoline yield. It can be
seen that the GA directly operates the structural objects
through operations, such as selection, crossover, and
mutation, adaptively adjusting the search direction of
parameters, resulting in good global convergence. When
GA is deeply combined with neural networks, more
reasonable parameter values can be searched for the
initialization of neural network parameters, and then the
learning ability of the model can be optimized, thereby
greatly improving the stability and accuracy of the neural
network.

Neural networks combined with PSO also show good
applicability. Gao et al.[!! constructed a BP neural
network for FCC regeneration, and used PSO to optimize
the initial weight and threshold of the neural network.
Compared with the model without optimization, the
prediction accuracy of PSO-BP has been greatly
improved. Shang et al.l®?! applied the Particle Swarm
Optimization with Pre-Crossover (PSOPC) algorithm
to the soft sensing modeling of C3 content in dry
gas of FCCU and found that the PSOPC model has
higher accuracy and better generalization. Wang et al.!%]
constructed the Principal Component Analysis (PCA)
based neural networks and PSO-BP model, and analyzed
and compared their simulation results, which showed
that the performance of the PSO-BP is better than that
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of the PCA-based neural network. The PCA-based soft
sensing model can better reflect the change trend and
value of the total hydrocarbon content above C3 in dry
gas, meeting the requirements of the actual production
process.

In addition, some researchers have explored the
combination of neural networks and simulated annealing
algorithms. Tang!®*! proposed a gasoline yield prediction
model of MIP unit based on the generalized regression
neural networks and AdaBoost algorithm. And they
optimized the gasoline yield prediction model by using
the simulated annealing algorithm in the individual
behavior based optimization algorithm and the GA in the
group behavior based optimization algorithm, founding
that both algorithms can obtain the optimal gasoline
yield. However, the simulated annealing algorithm fell
into local optimization and did not get the optimal value
at each optimization, indicating that the algorithm has
poor stability. They finally chose the modified GA as the
optimization algorithm to optimize gasoline yield.

Compared with the machine learning based analysis
methods of FCC, neural networks based methods are
more suitable for chemical engineering modeling. First,
neural networks have a complex multi-layer structure,
which can contain richer information and has strong
feature extraction abilities. Second, neural networks,
as a latent variable model, can help describe highly
correlated process variables. At the same time, the
massive data continuously collected in the chemical
production process just meet the data requirements of
the neural network model, providing data support for the
construction of a complex network structure.

2.3 Data-driven approaches with mathematical
mechanistic models

The data-driven-based methods obtain the hidden
information and laws by analyzing a large number of
historical data in FCC process, and then determine
the mapping relationship among the factors, such as
raw material properties, catalyst properties, operating
process conditions, and production results. However,
such methods cannot clearly describe the transfer
and reaction process, resulting in poor interpretability.
Moreover, these methods are completely data-driven,
so the calculation results often depend heavily on
the number and quality of data. It is easy to overfit
the environmental noise, resulting in poor prediction
generalization, which makes it difficult to analyze and
explain the process mechanism at a deep level.
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At the same time, there is a “survivor bias” when using
the historical data of the actual FCC production process.
All operating condition values are only distributed within
the range controlled by the experience of the production
line workers in the past, and the production results are
also guided by the profit goal of the production line,
Therefore, the sample space is too small to indicate a
complete data distribution law.

According to the characteristics of highly nonlinear
and strong correlation, as well as influencing factors
during the FCC process, the mathematical mechanism
models represented by lumped dynamics is combined
with the data-driven-based Al methods to construct a
mechanism-data hybrid driven analysis model, which
can make full use of the existing prior knowledge, mine
the effective information in the data, and improve the
efficiency and accuracy of modeling. And then the FCC
process is optimized to further improve the model’s
ability to predict product distribution.

According to the connection mechanism of models,
hybrid modeling can be divided into series, parallel, and
hybrid. Series means that the input variables first enter
the mechanism model for operation, the output of the
mechanism model is then used as the input of the non-
mechanism model, and the output of the non-mechanism
model is used as the final output. Parallel means that the
mechanism model and the non-mechanism model are
used to perform parallel calculation on the input data.
When the error of the output data obtained by using
the mechanism model alone is large, the appropriate
non-mechanism model can be used for error learning,
and the total output is the sum of the results of the
mechanism model and the non-mechanism model, so
that the obtained output error will be reduced. Hybrid
modeling can integrate several mechanism models and
several non-mechanism models at the same time, which
has a large degree of freedom and is very suitable for
complex petrochemical production process modeling.
The schematic diagram of series and parallel modeling
is shown in Fig. 2[6%],

Yang et al.l! used the calculation results of the lumped
kinetic mechanism model of FCC as the input of neural
networks, and the final performance was significantly
higher than that of using only the feedstock properties
as the input features of the neural network.

Bollas et al.[¢%7! proposed a hybrid model combining
FCC mechanism and neural networks, and found that the
hybrid model can improve the prediction accuracy better
than the simple mechanism model and the simple neural
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Fig.2 Schematic of the hybrid model construction method.

networks model by comparing with the industrial data
from Greek refineries. Liul®! took the MIP process as the
research object, constructed an eight-lumped reaction
network and calculated the product distribution. The
input layer of the BP neural network of 14 variables,
including the main raw material properties, catalyst
properties, and conditions, are selected, and 5 variables,
including the error between the predicted value and the
industrial actual value of the yield of diesel, gasoline,
liquefied gas, dry gas, and coke calculated by the
Iumped kinetic model are used as the output of the
BP neural network. They constructed a 14-7-5 BP
neural network hybrid model, in which a total of
14 variables, including main raw material properties,
catalyst properties, and operating conditions, were
selected as the BP neural network input, and a total of
5 variables, i.e., errors between predicted and industrial
yields of diesel, gasoline, liquefied gas, dry gas, and coke
yields calculated by lumped kinetic models, were as the
BP neural network output. And they combined the error
values obtained by the hybrid model with the prediction
value of the product distribution by the lumped model to
obtain the final product prediction value, which is closer
to the industrial measured value. It can be seen from
the above studies that the hybrid models combining the
mechanism-driven lumped kinetic model and the data-
driven neural networks take into account the advantages
of the two methods, having a good effect on further
improving the accuracy and precision of the FCC product
prediction.

3 FGD Prediction

Sulfur dioxide is one of the main air pollutions caused
by industrial production, mainly from the processing and
use of the fossil fuels!®®!. Acid rain formed by sulfur

dioxide can cause direct harm to the local environment,
damaging crops, forests, and human health. In China, the
sulfur oxides emitted by FCCU account for about 5% of
the total emissions. FCCU also contains a large amount
of nitrogen oxides, dust particles, etc., and the treatment
of its emissions is receiving increasing attention!’%.

Wet Flue Gas Desulfurization (WFGD), using the
alkaline absorbent solution to remove SO, from flue
gas, is currently the most important method for the
Flue Gas Desulfurization (FGD) with low cost and high
efficiency!®®!. The waste gas enters from the inlet at
the bottom of the WFGD unit. The alkaline absorbent
solution is introduced through the nozzles of three to
five spray stages at the upper part of the tower. After
mass transfer and chemical reaction, SO, is absorbed
into the liquid phase. The more alkaline absorbents are
used, the more SO, is absorbed and the greater the power
consumption is.

The AI method for modeling and optimization of
WEGD desulfurization has received more and more
research to take into account both the environmental
protection requirements and economic benefits. This
kind of research usually divides modeling and
optimization into two independent stages. In the first
stage, the model- or rule- based of the system is
established according to the process mechanism or
data. The second stage is to find the optimal operating
parameters based on the built model or rule base.

3.1 Modeling of WFGD

The main task of WFGD modeling is to find out
the relationship between desulfurization efficiency and
various operating parameters. Given the input SO,
concentration and WFGD process parameters ¢, the
residual SO, concentration C,, after desulfurization can
be predicted,

Cout = JWFGD (Cin, ¢) (1)

WFGD modeling methods can be divided into two
categories: mathematical model based methods and
data driven methods. Mathematical model based WFGD
modeling methods can be further divided into micro
mass transfer theory based methods!’!!, reaction kinetics
based methods!”?!, etc. The calculation results are
in good agreement with experiments and industrial
practice.

On the one hand, the input concentration of SO, can
be directly detected. On the other hand, SO, can be
predicted as a product of FCCU using a product analysis
method similar to that mentioned in Section 2. Wu et
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al.'”3! combined Convolutional Neural Network (CNN)
and LSTM to accurately predict the exhaust gas emission
of FCCU, where the global time cumulative influencing
factors can be captured by LSTM and the correlation
among the influencing factors within a time window is
captured by CNN.

Similar to the product analysis of FCC, mathematical
model based WFGD modeling methods are often not
accurate enough due to their simplified assumptions.
The data-driven methods can fit more complex details
and have more accurate prediction results. Reference
[74] proposed a data clustering method to obtain the
continuous optimal operation mode, where the guidance
of operation is provided by constraining the parameter
vector to continuously approach the optimal operation
mode. Some studies!”>7®! used neural networks to
predict the concentration of SO, at the outlet under
different operating parameters, which achieved good
results.

Because data-driven methods usually have the defects
of interpretability and generalization, some scholars
combine data-driven methods with mathematical model
based methods to improve performance. According to
Ref. [77], the economic performance mathematical
models of SO, removal efficiency and alkaline absorbent
consumption, power consumption, and process water
consumption were derived, and then the undetermined
coefficients were obtained by data-driven regression.
Reference [75] proposed that the residual error of the
prediction results based on the mathematical model
should be compensated by the artificial neural network
to improve the prediction accuracy. The mathematical
model for calculating residual error of the prediction
results fyar is shown in the following:

JMAT = Cin - €XP (- K- pH . (Npump/Load)a2> )
where ¢;, is the concentration of input SO,, pH4! is
the PH value of alkaline absorbent, Nyump is the number
of circulating pumps, Load is the load of circulating
pumps, and K, a;, and a, are undetermined coefficients,
which are calculated by data-driven regression method.

On the basis of the above mathematical model, a
fully connected neural network is added to compensate
for the residual error of the mathematical model
prediction results. There are 9 input units in its input
layer, including 9 process parameters: gas flow, PM
concentration, temperature, alkaline absorbent level,
alkaline absorbent density, input SO, concentration,
PH value of alkaline absorbent, number and load of
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circulating pumps. Compared with using mathematical
model alone or fully connected neural network, the
combination of mathematical model and data-driven
method has better performance, which indicates that
the comprehensive input variables enable the data-driven
model to compensate for neglected factors and eliminate
the errors of the mathematical model more effectively.

3.2 Optimization of FGD

The main task in the optimization stage of operating
parameters is to study the operating parameters
with the best economic performance (lowest cost)
on the premise of meeting the FGD requirements
(SO, residue does not exceed the environmental
protection standard). In industrial modeling, if a
significant analytical mathematical model is built,
mathematical programming can be used to find
the optimal operating parameters, such as linear
programming!’®!, nonlinear programming!’®!, and
dynamic programming!®’!. Reference [77] used multi-
objective programming to solve the optimal solutions
of slurry PH value, calcium sulfur molar ratio, and
liquid gas molar ratio after obtaining the model of
the relationship between output SO, concentration
and alkaline solvent consumption, power consumption,
and water consumption, which takes into account the
economic benefits while protecting the environment.

Data-driven models that often do not have an explicit
analytical form typically use metaheuristic algorithms
to find optimal operating parameters. Reference [77]
used particle swarm optimization algorithm based on
its hybrid method. Reference [75] used GA to find the
optimal operation method to reduce the operation cost.
Reference [81] determined the flow of alkaline absorbent
and the number of circulating pumps (or the current
corresponding to the number of circulating pumps)
through various meta-heuristic methods, such as GA,
simulated annealing, and particle swarm optimization
algorithm, based on the constructed neural networks for
predicting SO, concentration.

In recent years, some Reinforcement Learning (RL)
methods have been applied to the optimization of
operation parameters in process industry. Reference [82]
proposed a model-based method whose performance is
directly affected by the modeling accuracy, using an
on-policy RL method to plan the operating parameters
of wastewater treatment pumps after building a model
with gradient boosting trees and multi-linear regression.
For WFGD unit, Ref. [83] proposed a model-free oft-
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policy RL method, the core idea of which is to record
the state-action value through double Q value neural
networks with dueling architectures, and then obtain
each step optimal operation parameters through the
greedy strategy.

The observed state at the K-th step is determined by
the power load prediction value L 4 1and sulfur content
Sk+1 at the next (K + 1)-th step. The observed state at
the K-th step could be written as

s = [Licvr Sern MO oM 10, TP

3)
where M. ,5’) and T,f') are the state of the i-th circulating

pump at time £ and the duration of this state, respectively.

The return at moment k is defined as
re=w- fs (Teg1) + (L= w) - fee (Cos, k41. Pr) (4)

where f; and f,. are switching reward and economic

emission reward defined by business rules, respectively.

w represents the weight coefficient, Cyg, k41 and Py are
the value of outlet SO, concentration and total power
consumption, respectively. The calculation of f (Tx+1)
and fe. (Cos, k41 Pk) are as follows:

n
Ti k
fs Tip1) =) j—;le (5)
i=1

—4xCyy
05xe X os,k—H’

if Cos, k+1 > Cos, limir:
Jee (Cos, k+1’Pk+1) = 05 .05
1+e3x(Pr41-7) e

else
(6)
where I is positive inertia coefficient, and Coyg 1jmi; 1S
the emission standard of outlet SO, concentration.

The Q value neural network is composed of two fully
connected neural networks, value network V (s8,) with
parameter 6, and advanced network A (s,af,), with
parameter 6,. The definition of Q network is as follows:

0 (s,a@ev,ga) =
V (s6y) + A (s,ab,) — zln Y A(s.d'bs) (D)

where Q (s, a99v,9a) is the Q value neural network with
parameters g, g,, and inputs s and a are the discount
factors.

After using the experience pool data processed from
the DCS database of WFGD and learning the parameters
of O network through Q-learning, we define the greedy
strategy as

Agreedy = aAIg m;lx 0O(s,ald) (8)

The operation parameters that are currently being
executed is selected. Experiments show that the method
can obtain the rewards close to the theoretical optimal
solution in the WFGD steady state. At the same time,
the strategy keeps its performance through concept drift
adaptation without manual intervention.

4 Early Warning and Diagnosis of
Abnormal Conditions

The FCCU is very large in appearance. Under the harsh
conditions of high temperature and high pressure, a large
number of toxic, harmful, flammable, and explosive
hazardous chemicals may be produced in the production
process. If there is a production problem, it may cause
huge safety and environmental protection accidents, and
cause major life and property losses!®*. In Sinopec’s oil
refining units, more than 37% of the alarms come from
FCC, far exceeding other units. Among the unplanned
shutdown events, 53% occurred in the FCCU, and the
shutdown duration accounted for more than 72% of the
total unplanned shutdown duration of all unit!®!, Tt
is an important guarantee means for safety production
to monitor the real-time operation status of production
devices in real time, find and predict abnormal conditions
and give early warning timely, find out the causes of
problems through intelligent diagnosis, and guide staff
to intervene in advance.

Early warning of abnormal conditions of FCC refers to
the timely detection of problems by means of prediction
when the operating parameters deviate but the alarm
is not reached or the process status has not reached a
more serious level. The diagnosis process is to find out
the abnormal causes according to the characteristics of
various quantities (measurable or unmeasurable) in the
system that are different from the normal state on the
basis of finding the problem!3®.

In the abnormal early warning, on the one hand,
it is necessary to avoid the missing report of
production abnormalities, which may make the operator
insufficiently prepared, miss the opportunity of early
intervention, and eventually cause serious safety
accidents. On the other hand, it is necessary to
reduce the false alarms of production abnormalities.
Frequent false alarms will bring a lot of unnecessary
work and a waste of manpower. At the same time, it
may gradually lead to operator’s distrust of the alarm
system and bring potential safety hazards!®”-881. Tt is
of great significance for the safety production of FCC
to use neural networks for improving the performance
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of abnormal early warning and minimizing the level of
false alarms on the premise that the predicted recall rate
of abnormal conditions meets the safety production.

Al technology is applied to the operation process of
FCCU to establish a perfect statistical analysis model,
which has stronger real-time and predictability than
human monitoring. It can predict in advance whether the
key points of the production system will be abnormal and
monitor the production system in real time from multiple
angles to further reduce the occurrence of accidents and
economic losses.

4.1 Data-driven methods

Anomaly early warning can be regarded as a
regression problem. That is to predict the changing
trend of indicator data representing conditions in
the future according to a collected set of device
parameters!®%8931  Some researchers simplified the
abnormal early warning as a classification problem
according to the application needs. That is to predict
whether there will be abnormal conditions in a future
time window!+ 931,

Connectionist Al methods based on data-driven only
need data information to complete modeling, which can
effectively face with the complex, nonlinear, and time-
varying characteristics of petrochemical processes, and
are especially suitable for abnormal pattern recognition
of complex petrochemical processes such as catalytic
cracking!®®. The application of Al technologies, such
as statistical machine learning and neural network
to early warning, have been studied for many years.
In 2000, Kourniotis et al.”’! subdivided a group of
chemical accident data by region and time period, and
determined the value range of parameter values with the
help of Bayesian model, providing a theoretical basis
for chemical production accident risk early warning.
Salzano et al.[®® used a linear probability function to
represent the vulnerability of equipment and carried out
early warning research on industrial equipment accidents
on the basis of obtaining the equipment reliability
threshold. Wang"*! built an early warning index system
from the human, machine, and environment, and
established a support vector machine based risk early
warning model.

However, due to the strong correlation among the
process parameters of FCCU, the input features of the
chemical model have a lot of redundant information. On
the one hand, it will make the model more complex and
require more data and larger computing resources to train

Big Data Mining and Analytics, 2023, 6(?): 77-7?

the model. On the other hand, it will make the solution
space unstable, resulting in the weak generalization of
the model. Feature filtering or feature dimensionality
reduction can be used to reduce redundant features,
so as to reduce the complexity of the model and
improve the training efficiency and model generalization.
Principal Component Analysis (PCA) and Independent
Component Analysis (ICA) are two commonly used
dimensionality reduction methods. Reference [92] built
a chemical process monitoring method based on PCA.
Reference [93] applied ICA in chemical process risk
analysis. Jiang et al.”®! proposed a method combining
PCA and ICA. First, they projected the input features
into the dominant subspace via PCA. Second, they
extracted independent components from the dominant
subspace determined by PCA. Finally, they established a
Bayesian fault diagnosis system to identify the chemical
process state. Some applications use machine learning
methods combining feature space transformation with
regression processes, such as Partial Least Squares
regression (PLS)!!! PCA, ICA, and PLS are linear
transformations, while the relationship between process
parameters of FCCU is highly nonlinear!'¥!. Therefore,
nonlinear methods are often used to process the feature
of FCC. Some studies use Mutual Information (MI) to
select the features and eliminate the feature variables
having low correlation with the predicted results, so
as to achieve the purpose of reducing the feature
dimension®®°!1. Jiang et al.’! grouped features by
mutual information. The operation mode of the plant
was identified via the T2 statistics after reducing the
dimension of features via PCA in each group!'!.
Reference [102] constructed a random forest prediction
model and selected features according to the weight of
features in the random forest model. Reference [103]
used Spearman Ranking Correlation Coefficient (SRCC)
to improve the accuracy of prediction model for fault
diagnosis in the chemical process data.

According to the distribution characteristics of
process parameter vectors under abnormal conditions,
the Gaussian model is often applied to anomaly
detection'®. Reference [103] used the Gaussian
mixture model to detect the anomalies of nonlinear
systems. Reference [89] developed several detection
algorithms based on the traditional Gaussian process
regression, in which the mean function, covariance
function, likelihood function, and inference method
were specially designed. And the proposed scheme has
fewer assumptions and is more suitable for modern
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industrial processes compared with traditional detection
methods. Zhang et al.'%! used fuzzy neural network to
establish the normal behavior model of key equipment
parameters, calculated the residual between the sample
set data and the normal model, constructed a multivariate
Gaussian distribution model of the residual, and set
the abnormal state threshold by using the contour of
Gaussian probability density. In addition, methods such
as SVM!%1 Jeast squares SVM!!97 random forest!!%81,
and gradient boosting!!®! are also often applied to
anomaly detection.

With the widespread use of deep learning, more
and more studies have used artificial neural networks
for anomaly early warning!"'”!. As chemical process
analysis is a typical time series problem, the recurrent
neural networks represented by LSTM have been
paid attention to in the research of abnormal working
condition analysis!!'!l. In actual production, the number
of abnormal conditions is far less than that of normal
working conditions, thus, the samples are very uneven.
Data enhancement is often required for using LSTM.
The dataset is supplemented by dynamic simulation in
the mechanism model!''> 3], First, a simplified unit
working mechanism model is constructed and dynamic
simulation is carried out to obtain the dataset. The
dataset is then fitted with an LSTM, and the potential
relationship between variables that have a direct impact
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on accident hazards is discussed to predict abnormal
trends. Reference [114] used an encoder-decoder module
with the multi-head self-attention mechanism to deal
with the imbalanced time series data. A novel density-
based clustering density based clustering algorithms was
proposed for incomplete data processing!!'>!. Zhan et
al.l"®! proposed a controllable gradient rotation strategy
to realize local boundary expansion for positive samples.
Reference [117] proposed a data enhancement method
based on Generative Adversarial Networks (GANs) to
synthesize fault data to solve the imbalance problem
when using LSTM to predict the abnormal leakage of
heat exchanger tubes.

LSTM mainly learns the global change law of data
over a period of time, which is easy to ignore the local
features. While CNN can capture the local features
of data in a small window. Some studies of chemical
anomaly warning add convolution layer to improve the
performance of LSTM!'!®!, Figure 3 shows a network
model combining CNN and Bi-LSTM for predicting
abnormal conditions of FCCU!!!,

The method consists of three parts: (1) convolution
layer; (2) Bi-LSTM layer, and (3) attention mechanism
module. After one-dimensional convolution, the features
filtered by SRCC are used to obtain a hidden feature
sequence through a single-layer Bi-LSTM. And then,
the attention module is used to weight each element of

hy hy hs hr Temporal feature
Q0O O (@)
@ © © @ @ Softmax
© © O ©
a, a, az ar Attention
®\\ ®\ ,@) /,—’® ‘Weighting
Attention output Output layer

(©

Fig. 3 Model combining CNN and Bi-LSTM for predicting abnormal conditions of FCCU!%],
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the sequence to obtain the prediction results of target
parameters.

In industrial scenarios, during the running process
of the device, the operating environment and condition
may change over time, continuing generating data
belong to unknown classes with new characteristics and
distribution. To address this challenging problem, Chen
et al."?% proposed a generic open set signal classification
method, using Fourier transform and variational encoder-
classifier network to determine whether samples belong
to unknown or not.

4.2 Knowledge-driven methods

Symbolic Al methods based on knowledge-driven bulid
a rule system according to the working principle and
historical fault data of chemical plants. By hitting the
rules with the values of process parameters and change
rules, it can predict whether abnormal conditions will
occur and infer the causes of abnormal conditions!!?!l.

There are two main types of intelligent diagnosis
methods for abnormal conditions, namely, fault tree
based methods and Signed Directed Graph (SDG) based
methods.

On the basis of the fault tree, a tree structure is created
in which the least expected occurrence of a system event

Feed oil problem

al

|

Problems of recycled oil
slurry or recycled oil

T T —
High reaction

temperature
vy TIC1101

[Carbon accumulation ]1—6

AL

Regenerator
oxygen problem

Low regeneration
temperature
TIC1103

Excessive catalyst
circulation TIC1103

Small amount of
stripping steam

l
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is considered the top event, and events that may lead to
the top event are referred to as the intermediate events, or
bottom events, and the logic gates are used to illustrate
the relationship among events!'??!. The minimum cut
set of each event is found recursively after building the
fault tree. The cut set refers to the bottom event set
of the fault tree. When these bottom events occur, the
top event must occur. For the minimum cut set, the
cut set is no longer formed by removing any of the
bottom events. A minimum cut set corresponds to a
fault mode. And the fault causes can be traced by testing
the minimum cut sets one by one!!'?}l. Some studies
have proposed probabilistic ranking methods for fault
modes to improve the diagnosis speed!'?*!. The fault
tree method itself is a qualitative causal model. And
the fault tree used in some recent studies replaces the
inevitable relationship between cut sets and events with
occurrence probability. Reference [125] constructed the
fault probability density function of lower level events
under the influence of multiple factors, where the T-S
dynamic gate is used to calculate the fault probability
distribution function of upper level events based on the
sequence rules of lower level events and the output
rules of upper level events. Figure 4 shows the fault
tree that causes abnormal conditions of FCC carbon

Control valve failure

Too much feed

reaction FI1201 Pump problem

Nature of raw
materials
becomes heavy

Instrument failure

Large amount of
recycled oil slurry
FIC1105

Large amount
of recycled oil
FIC1106

Low main air flow
FIA104

Low oxygen
enrichment flow
FIA105

Control valve failure

D

Pump problem

Instrument failure

Fig. 4 Fault tree that causes abnormal conditions of FCC carbon accumulation'2¢],



Fan Yang et al.: Artificial Intelligence Methods Applied to Catalytic Cracking Processes 13

accumulation!!26].

However, the fault tree, strictly depending on the
summary of people’s experiences, is often suitable
for the determination of abnormal conditions with
certain types, which usually have high accuracy but
insufficient recall. For uncertain abnormal conditions,
the cause of abnormal conditions is usually traced
through the relationship among complex variables based
on SDGU?". The most likely root cause of abnormal
conditions is found in the fault logic relationship
database by combining the deviation degree of alarm
points with fuzzy rules. SDG is a graph representation
of process causal information, in which process variables
are represented as graph nodes and causal relationships
are represented as directed edges. SDG nodes contain
important attributes, i.e., node status, including “0”, “+”,
and “—”, which represent normal steady-state value,
above steady-state value, and below steady-state value,
respectively. The edge points from the cause node to
the effect node. And there are two types of SDG edges,
solid lines and dashed lines, which indicate the positive
and negative correlations between the changing trends
of the starting point and the end point, respectively!'?8.
Figure 5112°! shows a simple SDG model structure, which
means that an increase in A leads to an increase in B, and
then leads to a decrease in C.

The core of the SGD-based anomaly analysis method
is to decompose the anomaly Cause-Result Graph (CEG)
into several strongly connected units (a single node is
also a strongly connected unit), the largest of which
contains the root cause of the anomaly. Thus, the process
of anomaly diagnosis is essentially the process of finding
the maximum strongly connected units.

Under the assumption that the root cause of equipment
abnormality should be unique, the maximum strongly
connected unit is unique!'*®!. However, there may be
multiple abnormal sources at the same time during the
production process of FCCU. To solve this problem,
Reference [128] introduced the concept of minimum
cut set in fault tree into SDG, identifying the minimum
number of fault origins could help to explain the failure
the process. Reference [131] used the reverse reasoning
strategy instead of the common forward reasoning

A B C

Fig.5 Structure of SDG.

strategy to reason multiple abnormal sources.

Similar to the data-driven method, it is often necessary
to select and transform the variables that form nodes
when constructing SDG model. Reference [132] used the
idea of PCA weight to select the key variables with large
weight from the multi-layer correlation coefficient set,
which reduced the complexity of the SDG model. And
the deep-seated correlation feature of SDG can be fully
exploited, which has advantages of process monitoring.

Knowledge graph is an increasing popular method
of symbolic Al It uses nodes to represent a research
object and edges to represent the relationships among
objects. The graph can contain multiple classes of
objects and relationships!!33!. The powerful knowledge
representation capability of the knowledge graph can
be used to uniformly model the nodes of the fault tree
and the nodes of the SDG into the same graph!!3#!, In
addition, the mechanism process can be introduced into
the knowledge graph to enhance the interpretability!!33],
and then, the visual operation of the knowledge graph
can be used to interactively query the pattern graph to
find the cause of the abnormality!!36!,

Knowledge-driven methods for early warning and
diagnosis of abnormal conditions have stronger
interpretability,  higher accuracy, and better
generalization ability than data-driven methods.
Therefore, these methods are more suitable for abnormal
diagnoses to meet people’s understanding of the
diagnosis causes. However, the high construction cost
and the difficulty of implementation are usually the
biggest challenges for this type of methods.

4.3 Methods by combining data and knowledge

Knowledge-driven
diagnosis has strong interpretability, high accuracy, and
generalization ability. And it can interact well with
operators. Operators can often expand their diagnosis
ability according to their own experience. However,
there is a problem of low recall due to the difficulty
of building and covering all cases of abnormal cause
results. And the abnormal causes cannot be found
in many scenarios. On the contrary, the data-driven
method has advantages in construction difficulty and
prediction accuracy but has obvious disadvantages in
interpretability and generalization. Table 1 shows the
comparison of these two methods. More and more
recent studies have combined these two methods to
obtain better results.

Since the acquisition and collection of expert

anomaly early warning and
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knowledge requires a great cost of time and manpower,
some scholars have begun to try to excavate abnormal
causal relationships through data-driven methods, such
as association rules and decision trees!!".

Reference [93] proposed a method for mapping
fault trees to neural networks. First, the fault tree
of the equipment is constructed, and then the process
parameters of the bottom event satisfying the fault event
cut set are randomly generated by the fault tree. These
process parameters and fault results are added to the
training set of the neural network as samples.

Reference [138] proposed a fuzzy Bayesian network
model on reasoning fault diagnosis for complex
equipment that is based on the fault tree. First, a fault tree
model of complex equipment is established by analyzing
the structure of complex equipment. Second, fault tree
based Bayesian network topology is constructed by
using fault tree transformation method. And then,
the parameters were determined such as conditional
probability by fuzzy set theory, aiming at the lack of
structure data on complex equipment and the uncertainty
of expert scoring.

Some scholars combine SDG with data-driven
methods. Some of these methods propose possible
causes and paths of abnormal phenomena via SDG,
and then find the most likely path via time series
analysis!'*°!. And some methods combine SDG with
machine learning models, such as PLS!'4%1, SVMU4!1 or
neural network!!'”!, which predict the abnormal states of
some key points via machine learning models and find
the causes of these abnormal states in SDG.

At present, there are a large number of methods that
combine data and knowledge to realize the early warning
and diagnosis of abnormal conditions. Many scholars
are making various attempts and have achieved good
results. It can be seen that such methods are likely to
become an important research direction in the future.

Table 1 Comparison of the two methods.

Generalization

Method Interpretability Construction Metric

ability

High
accuracy,
high
recall
High
Knovyledge— Good Good Good accuracy,
driven low

recall

Data-driven Bad Bad Bad
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5 Conclusion

Product analysis and optimization, FGD prediction,
and abnormal condition early warning are several
key research directions in FCC process analysis. The
paper provides a comprehensive review of FCC
process analysis, mainly introducing methods based on
traditional mathematical mechanisms and Al. Compared
with traditional mathematical mechanism methods,
Al methods can effectively solve the difficulties in
chemical process modeling, such as high-dimensional,
nonlinear, strong correlation of influence factors, time-
varying, large lag, and uncertainty: (1) Machine learning
itself depends on data-driven, and can solve high-
dimensional problems automatically and efficiently;
(2) The nonlinear mapping relationship in chemical
process can be fitted effectively by applying kernel
function and nonlinear machine learning model; (3) The
problem of strong correlation among influencing factors
can be solved by feature selection or dimensionality
reduction methods, such as PCA, ICA, and PLS; (4) The
model that conforms to the time-varying and large lag
characteristics of chemical processes can be constructed
by leveraging the RNN structure; (5) The combination
of machine learning with mechanism model can further
reduce the uncertainty and improve the prediction
performance.

In a word, AI algorithm has become an important
approach to chemical process modeling and analysis.
In future research, hybrid models combining with
mechanism models and Al algorithms are expected to
become powerful tools for more comprehensive and
accurate analysis of chemical processes and prediction of
production results. These methods will play an important
role in the future development of the chemical industry
and will be of great value.

Acknowledgment

This work was supported in part by the State Key Program
of National Science Foundation (No. 61836006), the
National Natural Science Fund for Distinguished Young
Scholar (No. 61625204), the National Natural Science
Foundation of China (Nos. 62106161 and 61602328), as
well as the Key Research and Development Project of
Sichuan (No. 2019YFG0494).

References

[1] N. L. A. Souza, 1. Tkach, E. M. Jr, and K. Krambrock,
Vanadium poisoning of FCC catalysts: A quantitative
analysis of impregnated and real equilibrium catalysts,



Fan Yang et al.:

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

Applied Catalysis A General., vol. 560, no. 12, pp. 206—
214, 2018.

F. C. Salvado, F. Teixeira-Dias, S. M. Walley, L. Lea, and J.
B. Cardoso, A review on the strain rate dependency of the
dynamic viscoplastic response of FCC metals, Progress in
Materials Science, vol. 88, no. 7, pp. 186231, 2017.

C. X.Lu, Y. P. Fan, M. X. Liu, and X. Y. Yao, Advances
in key equipment technologies of reaction system in
RFCC unit, (in Chinese), Acta Petrolei Sinica (Petroleum
Processing Section), vol. 34, no. 3, pp. 441-454, 2018.
C. H. Yang, X. B. Chen, C. Y. Li, and H. Shan, Challenges
and opportunities of fluid catalytic cracking technology,
(in Chinese), Journal of China University of Petroleum.,
vol. 41, no. 6, pp. 171-177, 2017.

F. Yang, C. N. Dai, J. Q. Tang, J. Xuan, and J. Cao,
A hybrid deep learning and mechanistic kinetics model
for the prediction of fluid catalytic cracking performance,
Chem. Eng. Res. Des., vol. 155, pp. 202-210, 2020.

Z. Chen, S. Feng, L. Z. Zhang, Q. Shi, Z. M. Xu, S. Q.
Zhao, and C. M. Xu, Molecular-level kinetic modelling of
fluid catalytic cracking slurry oil hydrotreating, Chemical
Engineering Science, vol. 195, pp. 619-630, 2018.

P. Cristina, Four-lump kinetic model vs. three-lump
kinetic model for the fluid catalytic cracking riser reactor,
Procedia Engineering, vol. 100, pp. 602-608, 2015.

H. Zhang, H. Z. Wang, J. Z. Li, and L. H. Gao, A generic
data analytics system for manufacturing production, Big
Data Mining and Analytics, vol. 1, no. 2, pp. 160-171,
2018.

Z. H. Yuan, W. Z. Qin, and J. S. Zhao, Smart
manufacturing for the oil refining and petrochemical
industry, Engineering, vol. 2, pp. 66-74, 2017.

P. Nitu, J. Coelho, and P. Madiraju, Improvising
personalized travel recommendation system with recency
effects, Big Data Mining and Analytics, vol. 4, no. 3, pp.
39-154, 2021.

S. K. Patnaik, C. N. Babu, and M. Bhave. Intelligent and
adaptive web data extraction system using convolutional
and long short-term memory deep learning networks, Big
Data Mining and Analytics, vol. 4, no. 4, pp. 279-297,
2021.

G. Zhai, Y. Yang, H. Wang, and Du. S, Multi-attention
fusion modeling for sentiment analysis of educational big
data, Big Data Mining and Analytics, vol. 3, no. 4, pp.
311-319, 2020.

A. Guezzaz, Y. Asimi, M. Azrour, and A. Asimi,
Mathematical validation of proposed machine learning
classifier for heterogeneous traffic and anomaly detection,
Big Data Mining and Analytics, vol. 4, no. 1, pp. 18-24,
2021.

N. Yuvaraj, K. Srihari, S. Chandragandhi, R. A. Raja,
G. Dhiman, and A. Kaur, Analysis of protein-ligand
interactions of SARS-Cov-2 against selective drug using
deep neural networks, Big Data Mining and Analytics, vol.
4, no. 2, pp. 76-83, 2021.

Z. Tong, F. Ye, M. Yan, H. Liu, and S. Basodi, A survey
on algorithms for intelligent computing and smart city
applications, Big Data Mining and Analytics, vol. 4, no. 3,
pp- 155-172, 2021.

[16]

[17]

(18]

[19]

[20]

[21]

(22]

(23]

[24]

[25]

[26]

(27]

(28]

[29]

[30]

Artificial Intelligence Methods Applied to Catalytic Cracking Processes 15

B. Zhang, J. Zhu, and H. Su, Toward the third generation
of artificial intelligence, (in Chinese), Scientia Sinica
(Informationis), vol. 50, no. 9, pp. 1281-1302, 2020.

F. Qian, W. M. Zhong, and W. L. Du, Fundamental theories
and key technologies for smart and optimal manufacturing
in the process industry, Engineering, vol. 3, no. 2, pp.
154-160, 2017.

M. T. Shah, R. P. Utikar, V. K. Pareek, G. M. Evans, and
J. B. Joshi, Computational fluid dynamic modelling of
FCC riser: A review, Chemical Engineering Research and
Design, vol. 111, pp. 403-448, 2016.

D. V. Naik, V. Karthik, V. Kumar, B. Prasad, and M. O.
Garg, Kinetic modeling for catalytic cracking of pyrolysis
oils with VGO in a FCC unit, Chemical Engineering
Science, vol. 170, pp. 790-798, 2017.

J. Chang, W. Cai, K. Zhang, F. Zhang, L. Wang, and Y.
Yang, Computational investigation of the hydrodynamics,
heat transfer and kinetic reaction in an FCC gasoline riser,
Chemical Engineering Science, vol. 111, pp. 170-179,
2014.

M. Ahsan, Computational fluid dynamics (CFD)
prediction of mass fraction profiles of gas oil and
gasoline in fluid catalytic cracking (FCC) riser, Ain Shams
Engineering Journal, vol. 3, no. 4, pp. 403—409, 2012.

J. X. Zhang, Y. H. Qi, and J. Z. Qiu, Study on FCC
correlation models, (in Chinese), Computers and Applied
Chemistry, vol. 24, no. 11, pp. 1519-1522, 2007.

P. Cristina, Four-lump kinetic model vs. three-lump
kinetic model for the fluid catalytic cracking riser reactor,
Procedia Engineering, vol. 100, pp. 602-608, 2015.

Z. Chen, S. Feng, L. Zhang, S. Quan, and C. Xu,
Molecular-level kinetic modelling of fluid catalytic
cracking slurry oil hydrotreating, Chemical Engineering
Science, vol. 195, pp. 619-630, 2018.

F. Yang, M. Zhou, J. M. Jin, and J. Cao, Research progress
on application of intelligent optimization algorithm and
artificial neural network in FCC model analysis, (in
Chinese), Acta Petrolei Sinica (Petroleum Processing
Section), vol. 36, no. 4, pp. 878-888, 2020.

C. Tang, C. Yu, Y. Gao, J. Chen, and J. Yang, Deep
learning in nuclear industry: A survey, Big Data Mining
and Analytics, vol. 5, no. 2, pp. 140-160, 2022.

H. Wang, Z. Xu, H. Fujita, and S. Liu, Towards felicitous
decision making: An overview on challenges and trends
of big data, Information Sciences, vols. 367&368, pp. 747—
765, 2016.

S. Wang, J. Wan, D. Zhang, D. Li, and C. Zhang,
Towards smart factory for industry 4.0: A self-organized
multi-agent system with big data based feedback and
coordination, Computer Networks, vol. 101, pp. 158-168,
2016.

D.J. Doong, J. P. Peng, and Y. C. Chen, Development of a
warning model for coastal freak wave occurrences using
an artificial neural network, Ocean Engineering, vol. 169,
pp. 270-280, 2018.

J. H. Wei, M. Zhou, X. M. Wei, G. Z. He, L. Q. Song,
and J. L. Lei, Prediction of coke strength using linear
regression method, (in Chinese), China Coal., vol. 37,
no. 6, pp. 90-93, 2011.



16

(31]

(32]

(33]

[34]

(35]

(36]

[37]

(38]

(39]

[40]

[41]

[42]

[43]

[44]

C. Q. Lv, A multiple linear regression model to predict
chemical fiber output, (in Chinese), China Synthetic Fiber
Industry, vol. 9, no. 2, pp. 1-25, 2013.

J. Gmeinbauer, C. Ramakrishnan, and A. Reichhold,
Prediction of FCC product distributions by means of feed
parameters. Oil Gas European Magazine, vol. 120, no. 3,

pp- 29-33, 2004.
W. A. Anderson, P. M. Reilly, and M. Moo-Young,

Application of a Bayesian regression method to the
estimation of diffusivity in hydrophilic gels, Canadian
Journal of Chemical Engineering, vol. 70, no. 3, pp. 499—

504, 2010.

Z. C. Sun, H. H. Shan, Y. B. Liu, and Y. Li, Modeling
and optimization for catalytic cracking products of heavy
oil based on support vector regression, (in Chinese),
Petroleum Processing and Petrochemicals, vol. 43, no. 5,
pp. 76-81, 2012.

P. S. Roy, C. Ryu, S. K. Dong, and C. S. Park,
Development of a natural gas methane number prediction
model, Fuel., vol. 246, pp. 204-211, 2019.

X. Yuan, Z. Ge, and Z. Song, Locally weighted
kernel principal component regression model for soft
sensing of nonlinear time-variant processes, Industrial &
Engineering Chemistry Research, vol. 153, pp. 116-125,
2014.

X. Zhang, M. Kano, and Y. Li, Locally weighted kernel

partial least squares regression based on sparse nonlinear
features for virtual sensing of nonlinear time-varying
processes, Computers & Chemical Engineering, vol. 104,

pp. 164-171, 2017.
F. Yang, M. Zhou, C. N. Dai, and J. Cao, Construction

and analysis of gasoline yield prediction model for
FCC unit based on artificial intelligence algorithm, (in
Chinese), Acta Petrolei Sinica (Petroleum Processing
Section), vol. 35, no. 4, pp. 807-817, 2019.

X. Wang, Research on safety production early-warning
system for ammonia plant, Master dissertation, Anhui
University of Science and Technology, China, 2013.

Y. Y. Zhao, Application of data mining in gasoline yield
optimization for MIP process, Master dissertation, East
China University of Science and Technology, Shanghai,
2018.

J. Wang, D. F. Cao, X. Y. Lan, and J. S. Gao, Select filter-
wrapper characteristic variables for yield prediction of
fluid catalytic cracking unit, (in Chinese), CIESC Journal,
vol. 69, no. 1, pp. 464-471, 2018.

W. Wang, K. Wang, F. Yang, C. N. Dai, and J. M. Jin,
Construction and analysis of gasoline yield prediction
model for Fluid Catalytic Cracking Unit (FCCU) based
on GBDT and P-GBDT algorithm, Acta Petrolei Sinica
(Petroleum Processing Section), vol. 1, pp. 179-187,
2020.

C.Y. Ly, J. H. Wu, and H. M. Lin, Operation optimization
of neural networks for reaction-reproduction system of
fluid catalytic cracking unit, (in Chinese), Computers and
Applied Chemistry, vol. 19, pp. 447-450, 2002.

G. R. Wang, Application of neural network technology in
prediction models for the yield of hydrocracking products,
(in Chinese), Petrochemical Technology & Application,
vol. 4, pp. 349-353, 2015.

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

(58]

[59]

Big Data Mining and Analytics, 2023, 6(?): 77-7?

H. Jiang, J. Tang, and F. S. Ouyang, A new method for
the prediction of the gasoline yield of the MIP process,
Petroleum Science and Technology, vol. 33, no. 20, pp.
1713-1720, 2015.

C. Shang, F. Yang, D. Huang, and W. L. Yu, Data-driven
soft sensor development based on deep learning technique,
Journal of Process Control, vol. 24, no.3, pp. 223-233,
2014.

S. Hochreiter and J. Schmidhuber, Long short-term
memory, Neural Computation, vol. 9, no. 8, pp. 1735—

1780, 1996.

W. S. Ke, D. X. Huang, F. Yang, and Y. Jiang, Soft sensor
development and applications based on LSTM in deep
neural networks, in Proc. on 2017 IEEE Symposium Series
on Computational Intelligence (SSCI), Honolulu, HI, USA,
pp. 1-6, 2017.

X. Zhang, Y. Y. Zou, S. Y. Li, and S. Xu, Product yields
forecasting for FCCU via deep Bi-directional LSTM
network, in Proc. of Chinese Control Conference (CCC),
Wauhan, China, 2018, pp. 8013-8018.

X. Zhang, Y. Zou, S. Li, and S. Xu, A weighted auto
regressive LSTM based approach for chemical processes
modeling, Neurocomputing, vol. 367, pp. 64-74, 2019.
Y. Dauphin, R. Pascanu, C. Gulcehre, K. Cho, S. Ganguli,
and Y. Bengio, Identifying and attacking the saddle point
problem in high-dimensional non-convex optimization,
Advances in Neural Information Processing Systems, vol.
4, pp. 2933-2941, 2014.

P. K. Dasila, I. R. Choudhury, D. N. Saraf, V. Kagdiyal,
and S. J. Chopra, Estimation of FCC feed composition
from routinely measured lab properties through ANN
model, Fuel Process Technol., vol. 125, pp. 155-162,

2014.
S. Ruder, An overview of gradient descent optimization

algorithms, arXiv:1609.04747, 2016.
Q. Fan, Research on micro-vortex coagulation dosing

control model based on genetic algorithm and BP neural
network, (in Chinese), Master dissertation, East China
Jiaotong University, Shanghai, 2018.

F. S. Ouyang, J. F. You, and W. Fang, Optimizing
product distribution of MIP process by BP neural network
combined with genetic algorithm, (in Chinese), Petroleum
Processing and Petrochemicals, vol. 49, no. 8, pp. 98-104,
2018.

F. S. Ouyang and Y. Liu, Prediction of the product yield
from catalytic cracking process by lumped kinetic
model combined with neural network, (in Chinese),

Petrochemical Technology, vol. 46, no. 1, pp. 9-16, 2017.
F. S. Ouyang, W. Fang, and J. Tang, Optimizing product

distribution of MIP process using BP neural network, (in
Chinese), Petroleum Processing and Petrochemicals, vol.

47, no. 5, pp. 95-100, 2016.
W. G. Fang, Optimizing product distribution of FCC

MIP process by data mining technology, (in Chinese),
Master dissertation, East China University of Science and
Technology, Shanghai, 2016.

X. Su, H. Pei, and Y. Wu, Predicting coke yield of FCC
unit using genetic algorithm optimized BP neural network,
(in Chinese), Chemical Industry and Engineering Progress,
vol. 35, no. 2, pp. 389-396, 2016.



Fan Yang et al.:

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

Z. Wang, B. Yang, and C. Chen, Modeling and
optimization for the secondary reaction of FCC gasoline
based on the fuzzy neural network and genetic
algorithm, Chemical Engineering & Processing Process

Intensification, vol. 46, no. 1, pp. 175-80, 2014.
Y. M. Gao, Y. FE. Xing, J. Fu, W. Zhang, and J. H. Zhao,

The application of BP neural network based on a particle
swarm optimization to the catalytic cracking reaction-
regeneration process, (in Chinese), Computers & Applied

Chemistry, vol. 34, no. 11, pp. 899-903, 2017.
Y. Shang, W. Xu, and X. Gu, Particle swarm optimization

with pre-crossover and its application in soft-sensor of C3
concentration of FCCU, (in Chinese), Acta Electronica

Sinica, vol. 40, no. 9, pp. 1885-1888, 2012.
X. Wang, X. Gu, and Z. Liu, Soft sensing model of C3

concentration of FCCU based on PSO-BP neural network,
(in Chinese), Journal of System Simulation, vol. 21, no. 4,

pp. 973-980, 2009.
J. R. Tang, A new method for modeling and optimization

of gasoline yield of MIP process, (in Chinese), Master
dissertation, East China University of Science and

Technology, Shanghai, 2016.
W. Z. Qin, D. X. Xie, and J. S. Zhao, Petrochemical

Industry Intelligent Manufacturing (in Chinese). Beijing,

China: Chemical Industry Press, 2019.
G. M. Bollas, A. A. Lappas, D. K. Iatridis, and 1. A.

Vasalos, Five-lump kinetic model with selective catalyst
deactivation for the prediction of the product selectivity in
the fluid catalytic cracking process, Catalysis Today, vol.

127, nos. 14, pp. 3143, 2007.
G. M. Bollas, J. Papadokonstadakis, J. Michalopoulos, G.

Arampatzis, A. A. Lappas, L. A. Vasalos, and A. Lygeros,
Using hybrid neural networks in scaling up an FCC
model from a pilot plant to an industrial unit, Chemical
Engineering and Processing, vol. 42, nos. 8&9, pp. 697—

713, 2003.

Y. J. Liu, Prediction of the product yields from heavy
oil catalytic cracking process by lumped kinetic model
combined with neural network, (in Chinese), Master
dissertation, East China University of Science and
Technology, Shanghai, 2017.

H. Zhang, B. Zhang, and J. Bi, More efforts, more benefits:
Air pollutant control of coal-fired power plants in China,
Energy., vol. 80, pp. 1-9, 2015.

H. N. Tang, Analysis of FCCU wet flue gas scrubbing
technologies, (in Chinese),
Engineering, vol. 42, no. 3, pp. 1-5, 2012.

Y. Zhong, X. Gao, W. Huo, Z. Luo, M. Ni, and K. Chen,
A model for performance optimization of wet flue gas
desulfurization systems of power plants, Fuel Processing

Technology, vol. 89, no. 11, pp. 1025-1032, 2008.
W. Y. Tan, Z. X. Zhang, H. Y. Li, Y. X. Li, and

Z. W. Shen, Carbonation of gypsum from wet flue
gas desulfurization process: Experiments and modeling,
Environmental Science and Pollution Research, vol. 24,
no. 9, pp. 8602-8608, 2016.

B. Wu, W. He, J. Wang, H. Liang, and C. Chen, A
convolutional-LSTM model for nitrogen oxide emission
forecasting in FCC unit, Journal of Intelligent and Fuzzy
Systems, vol. 40, no. 1, pp. 1537-1545, 2021.

Petroleum  Refinery

[74]

[75]

[76]

(77

(78]

[79]

[80]

[81]

(82]

[83]

[84]

(85]

[86]

(87]

(88]

[89]

Artificial Intelligence Methods Applied to Catalytic Cracking Processes 17

Z. Qiao, X. Wang, H. Gu, Y. Tang, F. Si, C. E. Romero,
and X. Z. Yao, An investigation on data mining and
operating optimization for wet flue gas desulfurization
systems. Fuel., doi:10.1016/j.fuel.2019.116178.

Z. B. Ren, L. Sun, and Y. Deng, Modeling and
optimization research of CFB-FGD based on improved
genetic algorithms and BP neural network, Advanced
Materials Research, vols. 610-613, pp. 1601-1604, 2012.
J. Warych and M. Szymanowski, Model of the wet
limestone flue gas desulfurization process for cost
optimization, Ind. Eng. Chem. Res., vol. 40, no. 12, pp.
2597-2605, 2001.

P. F. Hou, J. Y. Bai, and J. Yin, On-line monitoring
and optimization of performance indexes for limestone
wet desulfurization technology, Applied Mechanics and
Materials, vols. 295-298, pp. 1020-1028, 2013.

F. Vieira and H. M. Ramos, Optimization of operational
planning for wind/hydro hybrid water supply systems,
Renew Energy, vol. 34, no. 3, pp. 928-936, 2009.

J. Lang and J. Zhao, Modeling and optimization for oil
well production scheduling, Chinese Journal of Chemical
Engineering, vol. 24, no. 10, pp. 1423-1430, 2016.

V. Kapsalis and L. Hadellis, Optimal operation scheduling
of electric water heaters under dynamic pricing, Sustain.
Cities Soc., vol. 31, pp. 109-121, 2017.

F. Yang, Y. S. Luo, C. S. Zhang, and T. Liu, Process
optimization method, device and equipment and computer
readable storage medium, (in Chinese), China Patent
CN201911424710.6, June, 2020.

J. Filipe, R. J. Bessa, M. Reis, R. Alves, and P. Povoa,
Data-driven predictive energy optimization in a wastewater
pumping station, Applied Energy., vol. 252, p. 113423,
2019.

Z. Shao, F. Si, D. Kudenko, P. Wang, and X. Tong,
Predictive scheduling of wet flue gas desulfurization
system based on reinforcement learning, Computers &
Chemical Engineering, vol. 141, p. 107000, 2020.

H. Gharahbagheri, S. Imtiaz, and F. Khan, Root cause
diagnosis of process fault using KPCA and Bayesian
network, Ind. Eng. Chem. Res., vol. 56, no. 8, pp. 2054—
2070, 2017.

P. Li, X. J. Zheng, and L. Ming, Application of big data
technology in operation analysis of catalytic cracking, (in
Chinese), Chemical Industry and Engineering Progress,
vol. 35, no. 3, pp. 665-670, 2016.

H. Z. Wang, J. F. Zhu, J. S. Zhao, T. Qiu, and B. Chen,
Kalmen filter and grey system based abnormal event
trend predictio method in chemical progress, (in Chinese),
Computers and Applied Chemistry, vol. 32, no. 3, pp. 257—
260, 2015.

F. Yang and D. Y. Xiao, Research topics of intelligent
alarm management, (in Chinese), Computers and Applied
Chemistry, vol. 28, no. 12, pp. 1485-1491, 2011.

F. Yang, S. L. Shah, D. Xiao, and T. Chen, Improved
correlation analysis and visualization of industrial alarm
data, ISA T., vol. 51, no. 4, pp. 499-506, 2012.

B. Wang and Z. Mao, Outlier detection based on Gaussian
process with application to industrial processes, Applied
Soft Computing, vol. 76, pp. 505-516, 2019.



18

[90]

[91]

[92]

(93]

[94]

[95]

[96]

[97]

(98]

[99]

[100]

[101]

[102]

[103]

[104]

Y. Ren, J. Wang, and W. Tian, Fault detection and
identification in chemical processes based on feature
engineering and kernel extreme learning machine, J. Chem.

Eng. Chin. Univ., vol. 33, no. 5, pp. 1271-1284, 2019.
W. Tian, Y. Ren, Y. Dong, S. Wang, and L. Bu,

Fault monitoring based on mutual information feature
engineering modeling in chemical process, Chinese
Journal of Chemical Engineering, vol. 27, no. 10, pp.

2491-2497, 2019.
Y. Cao, Y. Yuan, Y. Wang, and W. Gui, Hierarchical

hybrid distributed PCA for plant-wide monitoring of
chemical processes, Control Engineering Practice, vol.

111, p. 104784, 2021.
M. Sarbayev, M. Yang, and H. Wang, Risk assessment

of process systems by mapping fault tree into artificial
neural network, Journal of Loss Prevention in the Process

Industries, vol. 60, pp. 203-212, 2019.
F. Yang, J. M. Jin, and Y. H. Wang, Early warning

method and device, (in Chinese), China Patent

CN201811457374.0, 2019.
J. M. Jin, F. Yang, and P. Yang, Data processing method

and device, and electronic equipment, (in Chinese), China

Patent CN 201911403955.0, 2020.
Z. Ge, Z. Song, and F. Gao, Review of recent research on

data-based process monitoring, Industrial & Engineering

Chemistry Research, vol. 52, no. 10, pp. 3543-3562, 2013.
S. P. Kourniotis, C. T. Kiranoudis, and N. C. Markatos,

Statistical analysis of domino chemical accidents, Journal
of hazardous materials, vol. 71, nos. 1-3, pp. 239-252,

2000.
E. Salzano, A. G. Agreda, A. D. Carluccio, and G.

Fabbrocino, Risk assessment and early warning systems
for industrial facilities in seismic zones, Reliability
Engineering & System Safety, vol. 94, no. 10, pp. 1577—

1584, 2009.
Q. Jiang, X. Yan, and J. Li, PCA-ICA integrated

with Bayesian method for non-Gaussian fault diagnosis,
Industrial & Engineering Chemistry Research, vol. 55,

no. 17, pp. 49794986, 2016.
C. Botre, M. Mansouri, M. N. Karim, H. Nounou, and M.

Nounou, Multiscale PLS-based GLRT for fault detection
of chemical processes, Journal of Loss Prevention in the

Process Industries, vol. 46, pp. 143-153, 2017.
Q. Jiang and X. Yan, Monitoring multi-mode plant-

wide processes by using mutual information-based multi-
block PCA, joint probability, and Bayesian inference,
Chemometrics and Intelligent Laboratory Systems, vol.

136, pp. 121-137, 2014.
C. Chen, N. Lu, L. Wang, and Y. Xing, Intelligent selection

and optimization method of feature variables in fluid
catalytic cracking gasoline refining process, Computers &

Chemical Engineering, vol. 150, p. 107336, 2021.
M. Karami and L. Wang, Fault detection and diagnosis

for nonlinear systems: A new adaptive Gaussian mixture
modeling approach, Energy and Buildings, vol. 166,

pp. 477-488, 2018.
A. Guezzaz, Y. Asimi M. Azrour, and A. Asimi,

Mathematical validation of proposed machine learning
classifier for heterogeneous traffic and anomaly detection,
Big Data Mining and Analytics, vol. 4, no. 1, pp. 18-24,
2021.

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

Big Data Mining and Analytics, 2023, 6(?): 77-7?

Y. X. Zhang, Y. Zheng, X. Y. Qian, and G. Mohanmmed,
Abnormaly monitoring based on fuzzy neural network
with hybrid input for wind turbine generator, (in Chinese),
Control Engineering, vol. 28, no. 4, p. 9, 2021.

M. Onel, C. A. Kieslich, Y. A. Guzman, C. A. Floudas, and
E. N. Pistikopoulos, Big data approach to batch process
monitoring: Simultaneous fault detection and diagnosis
using nonlinear support vector machine-based feature
selection, Computers & Chemical Engineering, vol. 115,
pp. 4663, 2018.

J. Q. Hu, F. Guo, and L. B. Zhang, Study on ultra-
early prediction of chemical abnormal situation based
on improved PSO algorithm and LSSVM, (in Chinese),
Journal of Electronic Measurement and Instrumentation,
vol. 32, no. 2, pp 3641, 2018.

Y. Zhang, L. Luo, X. Ji, and Y. Dai, Improved random
forest algorithm based on decision paths for fault diagnosis
of chemical process with incomplete data, Sensors-Basel,
vol. 21, no. 20, p. 6715, 2021.

R. Shrivastava, Comparative study of boosting and
bagging based methods for fault detection in a chemical
process, in Proc. on 2021 International Conference
on Artificial Intelligence and Smart Systems (ICAIS),
Coimbatore, India, 2021, pp. 674-679.

S. Heo and J. H. Lee, Fault detection and classification
using artificial neural networks, IFAC International
Symposium on Advanced Control of Chemical Processes,
vol. 51, no. 18, pp. 470-475, 2018.

R. Arunthavanathan, F. Khan, S. Ahmed, and S. Imtiaz,
A deep learning model for process fault prognosis,
Process Safety and Environmental Protection, vol. 154,

pp. 467-479, 2021.

Z. Liu, W. Tian, Z. Cui, H. Wei, and C. Li, An intelligent
quantitative risk assessment method for ammonia
synthesis process, Chemical Engineering Journal, vol.
420, p. 129893, 2021.

W. Tian, N. Liu, D. Sui, Z. Cui, Z. Liu, J. Wang, H. Zhou,
and Y. Zhao, Early warning of Internal leakage in heat
exchanger network based on dynamic mechanism model
and long short-term memory method, Processes, vol. 9,
no. 2, p. 378, 2021.

C. Hou, J. Wu, B. Cao, and J. Fan, A deep-learning
prediction model for imbalanced time series data
forecasting, Big Data Mining and Analytics, vol. 4, no. 4,
pp- 266-278, 2021.

Z. Xue and H. Wang, Effective density-based clustering
algorithms for incomplete data, Big Data Mining and
Analytics, vol. 4, no. 3, pp. 183-194, 2021.

A. H. Zhan, Y. Sang, Y. Sun, and J. Lv, A neural network
learning algorithm for highly imbalanced data

classification, Information Sciences, vol. 612, pp.
496-513, 2022.

P. Xu, R. Du, and Z. Zhang, Predicting pipeline leakage
in petrochemical system through GAN and LSTM,
Knowledge-Based Systems, vol. 175, pp. 50-61, 2019.

B. L. Shao, X. L. Hu, G. Q. Bian, and Y. Zhao, A
multichannel LSTM-CNN method for fault diagnosis of
chemical process, Mathematical Problems in Engineering,
vol. 2019, pp. 1-14, 2019.



Fan Yang et al.:

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

W. Tian, S. Wang, S. Sun, C. Li, and Y. Lin, Intelligent
prediction and early warning of abnormal conditions for
fluid catalytic cracking process, Chemical Engineering
Research and Design, vol. 181, pp. 304-320, 2022.

J. Chen, G. Wang, J. Lv, Z. He, T. Yang, and C. Tang,
Open set classification for signal diagnosis of machinery
sensor in industrial environment, IEEE Transactions on
Industrial Informatics, doi: 10.1109/T11.2022.3169459.
D. Vitkus, I. Steckeviius, N. Goranin, D. Kalibatien,
and A. Enys, Automated expert system knowledge base
development method for information security risk analysis,
International Journal of Computers Communications &
Control, vol. 14, no. 6, pp. 743-758, 2020.

D. Q. Zhu and S. L. Yu, Survey of knowledge-based
fault diagnosis methods, (in Chinese), Journal of Anhui
University of Technology, vol. 19, no. 3, pp. 197-204,
2002.

J. A. Carrasco and V. Sune, An algorithm to find minimal
cuts of coherent fault-trees with event-classes, using a
decision tree, [EEE Transactions on Reliability, vol. 48,
no. 1, pp. 3141, 1999.

S. Ni, Y. F. Zhang, H. Yi, and X. F. Liang, Intelligent
fault diagnosis method based on fault tree, (in Chinese),
Journal of Shanghai Jiaotong University, vol. 42, no. 8,
pp-1372-1375, 2008.

D. N. Chen, J. Y. Xu, C.Y. Yao, H. Y. Pan, and Y. L. Hu,
Continuous-time multi-dimensional T-S dynamic fault tree
analysis methodology, (in Chinese), Journal of
Mechanical Engineering, vol. 57, no. 10, pp. 231-244,
2021.

C. K. Li, C. L. Wang, X. J. Gao, and J. Zhu, Abnormal
situations monitoring and early warning system of
petrochemical process, (in Chinese), Safety Health &
Environment, vol. 15, no. 11, pp. 8-13, 2015.

D. Gao, C. G. Wu, B. Zhang, and X. Ma, Signed directed
graph and qualitative trend analysis based fault diagnosis
in chemical industry, Chinese Journal of Chemical
Engineering, vol. 18, no. 2, pp. 265-276, 2010.

H. Vedam and V. Venkatasubramanian, Signed digraph
based multiple fault diagnosis, Computers & Chemical
Engineering, vol. 21, pp. S655-S660, 1997.

W. Tian, S. Zhang, Z. Cui, Z. Liu, S. Wang, Y. Zhao, and H.
Zhou, A fault identification method in distillation process
based on dynamic mechanism analysis and signed directed
graph, Processes, vol. 9, no. 2, p. 229, 2021.

Fan Yang received the PhD degree in
electronics and information from Sichuan
University, China in 2022. Now he is
working as a principal scientist and head
of the Algorithm and Big Data Center, New
Hope Liuhe Co Ltd, China. His research
interests include neural networks, machine
learning, big data and their application in

industry.

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

[139]

[140]

[141]

Artificial Intelligence Methods Applied to Catalytic Cracking Processes 19

F. Yang and D. Y. Xiao, Review of SDG modeling and its
application, (in Chinese), Control Theory & Applications,
vol. 22, no. 5, pp. 767774, 2005.

Z.Zhang, C. Wu, B. K. Zhang, T. Xia, and A. F. Li, SDG
multiple fault diagnosis by real-time inverse inference,
Reliability Engineering & System Safety, vol. 87, no. 2, pp.
173-189, 2005.

Y. X. Dong, L. N. Li, and W. Tian, A novel fault diagnosis
method based on multilayer optimized PCC-SDG, CIESC
Journal, vol. 69, no. 3, pp. 1173-1181, 2018.

IEEE, Framework of knowledge graphs: IEEE2807-
2022[S/OL], https://standards.ieee.org/ieee/2807/7525/,
2022.

J. Q. Tang, F. Yang, J. M. Jin, and C. S. Zhang, Causal
link analysis method and device and computer readable
storage medium, China Patent CN202010618648.0, 2020.
F. Yang, Q. F. Kuang, B. B. Jin, and C. S. Zhang,
Chemical reaction path acquisition method and device,
electronic device, and storage medium, China Patent
CN201810681778.1, 2018.

X. Fan and F. Yang, Graph data query method and
device and storage medium, (in Chinese), China Patent
CN202010579437.0, 2020.

J. Lee, C. Yoo, S. W. Choi, and P. A. Vanrolleghem,
Nonlinear process monitoring using kernel principal
component analysis, Chemical Engineering Science, vol.
59, no. 1, pp. 223-234, 2004.

H.Z. Chen, A.J. Zhao, T.J. Li, C. C. Cai, S. Cheng, and C.
L. Xu, Fuzzy Bayesian network inference fault diagnosis
of complex equipment based on fault tree, (in Chinese),
Systems Engineering and Electronics, vol. 43, no. 5, pp.
1248-1261, 2021.

Z. Gao, T. Breikin, and H. Wang, Discrete-time
proportional and integral observer and observer-based
controller for systems with both unknown input and output
disturbances, Optimal Control Applications and Methods,
vol. 29, no. 3, pp. 171-189, 2008.

S.J. Ahn, C.J. Lee, Y. Jung, C. Han, E. S. Yoon, and G.
Lee, Fault diagnosis of the multi-stage flash desalination
process based on signed digraph and dynamic partial least
square, Desalination, vol. 228, no. 1, pp. 68-83, 2008.
N. Lv and X. Wang, Fault diagnosis based on signed
digraph combined with dynamic kernel PLS and SVR,
Industrial & Engineering Chemistry Research, vol. 47, no.
23, pp. 9447-9456, 2008.

Mao Xu received the MEng degree in
information science and technology from
Southwest Jiaotong University, China
in 2019. He is currently an algorithm
researcher at the Algorithm and Big Data
Center, New Hope Liuhe Co Ltd, China.
His main research interest is artificial
intelligence methods for agriculture and

animal husbandry.



20

Jiancheng Lv received the PhD degree
in computer science and engineering from
the University of Electronic Science and
Technology of China, Chengdu, China
in 2006. He was a research fellow
at the Department of Electrical and
Computer Engineering, National University
of Singapore, Singapore. He is currently a
professor at the Data Intelligence and Computing Art Laboratory,
College of Computer Science, Sichuan University, Chengdu,
China. His research interests include neural networks, machine
learning, and big data.

Big Data Mining and Analytics, 2023, 6(?): 77-7?

Wengiang Lei received the PhD degree in
computer science from National University
of Singapore, Singapore in 2019. He is
currently a professor at Sichuan University,
China. His research interests include
natural language processing, computational
linguistics, computational musicology, and
computational social science.



