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ABSTRACT

Data-driven method has been widely used in Fluid Catalytic Cracking (FCC) process
modeling. However, due to the complexity of chemical process both in time and spatial
domain, how to reflect the time and spatial characteristics of FCC units and build corre-
sponding model is important to construct a better model for the gasoline yield prediction.
In this paper, a special neural network structure was developed to deal with the input
variables with different time scales considering the collection characteristics of various
variables, as well as the time continuity of large-scale process manufacturing units,
LSTMs with different time scales are stacked to extract temporal and spatial features to
help capture the relationship between influencing factors and product yield. The char-
acteristics of FCC process are also fully reflected in data processing and building model. It
is demonstrated from the conclusions that the new model developed in this paper per-
forms better than the traditional LSTM networks, which will be of great help to the in-
telligent upgrading of the FCC process.

© 2022 Institution of Chemical Engineers. Published by Elsevier Ltd. All rights reserved.

1. Introduction

proposed to handle the product yield predicting. These

Fluid Catalytic Cracking (FCC) is one of the most important
chemical processes in the oil and gas industry. At present, 30
% of diesel and 70 % of gasoline in China are from the FCC
process (Souza et al., 2018; Salvado et al., 2017; Lu et al., 2018;
Yang et al., 2017), thus it is significant to build an accurate
predicting model for improving the utilization rate of feed oil
and the yield of high-value products. However, FCC is a
highly complex process affected by many non-linear and
underlying interactions. Numerous factors, such as feed
quality, catalyst characteristics, as well as operating condi-
tions, will affect the reaction process and product yield. In
this case, it is a complex task to build a chemical process
model to analyze the relationship between numerous factors
and product yield. Different kinds of methods have been
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methods can be classified into two categories: mechanism-
based methods and data-driven methods. Mechanism-based
methods ignore many factors, which might be hard to com-
pletely simulate the chemical process, while data-driven
methods could draw the relationship between numerous
factors and product yield, which have been paid more and
more attention though the mechanisms of the reactions are
unclear or too complicated.

As one of the data-driven methods, artificial neural net-
work (ANN) is skilled in dealing with non-linear problems
and has been widely used in the chemical process modeling
(Ma et al.,, 2001; Wang, 2015; Deng et al.,, 2011; Jiang et al,,
2015). Various methods have been proposed to improve the
performance of ANN and can be summarized as the fol-
lowing two categories. The first one is to adjust the hyper
parameters by optimization algorithms, which could accel-
erate the convergence speed, and avoid the model to fall into
local optimum. For example, the genetic algorithm(GA) and
particle swarm optimization (PSO) methods are used to
search the initial value and threshold of BP neural network
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respectively in Su et al.,, (2016a) and Gao et al. (2017)., while
the GA and PSO methods are applied to optimize BP neural
network in Su et al. (2016b), which indicates that the per-
formance of GA-BP is better than PSO-BP. The second cate-
gory is the hybrid of ANN and mechanism model. A neural
network model is developed to fit the differences between
the lumped model results and the real values of product
yield, then the results of lumped are modified (Ouyang and
Liu, 2017). Furthermore, the results of the lumped model are
jointed in the input variables of the neural network model to
predict product yield in Yang et al. (2020). However, these
methods still have some shortcomings. Adjusting the hyper
parameters of ANN cannot improve the fitting ability for the
set of hypothesis functions, although it can help the re-
searcher find better fitting functions from a given hypothesis
space. The hybrid of neural network and mechanism model
has strict requirements on data quality, although it can im-
prove the prediction accuracy. In the actual production pro-
cess, it is difficult to satisfy its requirements. In addition, the
chemical process is a continuous process in the time domain,
and temporal features of time series data should be con-
sidered as well, while ANN ignores the temporal features in
the time domain.

To improve the performance of the above methods, Long
Short-Term Memory (LSTM) model which could extract
temporal features, is adopted for chemical process modeling
(Ke et al,, 2017; Wang et al., 2018). A deep bidirectional LSTM
is developed for predicting product yield in ref (Zhang et al,,
2018). Moreover, a WAR-LSTM model is proposed to predict
product yield in ref (Zhang et al., 2019)., where correction
information and prior knowledge are extracted from histor-
ical yield for the predictive model. However, methods in ref
(Zhang et al., 2018, 2019). cannot be applied to adjust con-
trollable operating variables, which is significant for the
guidance to improve the production results in the actual
production process. It is hard to obtain the future variables
which are implemented in the deep bidirectional LSTM in
Zhang et al. (2018). In Zhang et al. (2019), the historical values
are taken as the input variables, which will cause two bad
effects. On the one hand, the weight of controllable operating
variables in the model will be reduced, since the difference
between the product yields at the adjacent time is very small.
On the other hand, it is difficult to adjust the parameters in a
short time, since the model can only predict the yield at next
moment. Besides, the recurrent neural network for chemical
process modeling usually uses limited length time series,
which cannot reflect the time delay characteristics of various
factors in large-scale equipment, such as Fluid Catalytic
Cracking Units (FCCU).

While collecting FCCU data, the values of various oper-
ating conditions in the distributed control system (DCS) are
recorded in real-time, and the values of feed quality in the
laboratory information management system (LIMS) are
manually recorded, which leads to a much larger recording
interval of LIMS than that of DCS. DCS and LIMS data are
used as input variables and these various variables need to
be aligned in the time domain. According to the character-
istics of FCCU, we propose a Multi-Level LSTM (ML-LSTM).
Input variables with different time scales will be aligned
through a special network structure, and significant tem-
poral as well as spatial features could be extracted by
stacking multiple LSTM structures. The main contributions
are as follows:

(1) A special network structure is built to deal with the dif-
ference of data recording frequency, and takes the more
comprehensive factors into consideration, which influ-
ence on product yield.

(2) A new neural network model is proposed to predict the
product yield of FCCU, which reflects the time continuity
of the production process of large-scale process manu-
facturing units.

(3) The effectiveness of ML-LSTM is proved by analyzing the
relationship between the product yield and the features,
which are extracted by multiple LSTM structures.

In this paper, the principle of FCCU, as well as the col-
lection and storage methods of production data, and analysis
on gasoline yield used in the paper are introduced in Section
2.In Section 3, we present the structure of LSTM, and the ML-
LSTM is proposed to predict gasoline yield according to the
characteristics of FCCU. In Section 4, the actual process data
from FCCU are utilized to verify the effectiveness of our
model, and the prediction results are analyzed and dis-
cussed. Finally, the concluding remarks are pointed out in
Section 5 of this paper.

2. Problem formulation
2.1. Overview of FCC process

The main purpose of FCCU is to convert heavy oil to high-
value light transportation fuels in the condition of suitable
temperature, pressure, and catalyst. There are three sub-
systems in FCCU: reactor-regenerator system, fractionation
system, and absorption-stabilization system. The main task
of the reactor-regenerator system is to convert feed oil, wax
oil, and residual oil to high-value fuels. In the fractionation
system, according to the different boiling points, the high-
temperature oil and gas from the reactor-regenerator system
are cut into rich oil, naphtha, diesel oil and slurry oil. In the
absorption-stabilization system, naphtha and rich oil are
separated to dry gas, gasoline, and liquid hydrocarbons ac-
cording to different solubility in liquids.

Among the above products from FCCU, gasoline is a high-
value product and an important engine fuel. To build the
prediction model of gasoline yield is the key research goal in
the paper. In the process of FCC, feed quality, catalyst char-
acteristics, and operating conditions have an important im-
pact on the gasoline yield (Ma et al., 2001). Feed quality and
catalyst characteristics mainly include aromatics, saturates,
resins and coke. The operating conditions mainly consist of
temperature and pressure variables.

2.2. Collection methods and analysis on FCCU data

LIMS and DCS systems are widely used in collecting FCCU
data. The LIMS system mainly manages the data of feed oil
and regenerated catalysts, while the DCS system mainly re-
cords operating variables and manage the mass bal-
ance data.

2.3. The goals for modeling

The ultimate goal of chemical process modeling is that the
model can be used to adjust operating variables, and then
improve product yield. The premise is that a prediction
model for product yield needs to be built, of which the
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Fig. 1 - The structure of LSTM. t denotes all the time steps, x; denotes input variables, h; and c; denote the hidden state and
cell state of LSTM, respectively, hy is the initial value of hidden state, and c; is the initial value of cell state.

predicted result is closest to the real value. It can be defined
as follows:
argmin L (f (X), Y)

1 1
where X denotes the time series data of various factors, Y
denotes the real values of product yield, f(-) denotes the re-
lationship between various factors and product yield, and
L (-) measures the difference between the predicted values
and the real values.

2.4. Challenges for modeling

The challenges of building a gasoline yield predicting model
are as follows: Firstly, in the production process of FCCU, it is
hard to clarify which parameters affect the gasoline yield at
each time, since the feed oil stays in the FCCU for a while and
the operating conditions are dynamic. Secondly, due to the
different collection frequency of data, when taking the DCS
and LIMS data as input variables, it is essential to align
variables in the time domain. In addition, while applying the
historical yields as the input variables, the model weights of
the controllable operating variables might be too small to be
analyzed.

3. Multi-level LSTM models

Long Short-Term Memory (LSTM) is a typical recurrent
neural network and can extract the temporal features in time
series data. However, there are large differences between
DCS data and LIMS data on the collection frequency. In this
case, various variables need to be aligned in the time domain
while being implemented as input variables. Multi-level
LSTM (ML-LSTM) is proposed in the paper, where a special
network is built to deal with the input variables with dif-
ferent collection frequencies, and a novel training method is
used to help the model to capture the long-term de-
pendencies in FCCU data.

3.1 The structure of long short-term memory

As a typical recurrent neural network, LSTM (Hochreiter and
Schmidhuber, 1997) is successfully applied in many tasks,
such as speech recognition and natural language processing
(Zhang and Yang, 2018; Tian et al., 2019). The structure of
LSTM is shown in Fig. 1.

In Fig. 1, h; is the output of LSTM at tth time step, and is
the accumulation of all input variables, such as x, X, Xt_1, X:.
The computations of h; and c; are affected by each input

variable. We use Gy (-) and Gc(-) to denote the relationship
between (X;, Xt_1, ..., X, X1, ho, Co) and h; as well as c;, and they
can be described as follows:

he = Gn (%e, X¢—1,...,%, X1, ho, Co; Op) )

¢t = Ge (X, X¢—1, .., Xp, X1, ho, €0; O) (3)

where @, and O, denote the parameters of Gy () and G.(),
respectively.

A LSTM cell is the calculation at each time step, and its
structure is shown in Fig. 2. The cell has input to input gate,
forget gate, output gate and cell state connections, and they
are parameterized by weight matrices U;, Uy, U, and U, re-
spectively. It also has hidden state to input gate, forget gate,
output gate and cell state connections, and they are para-
meterized by weight matrices Wi, Wy, W, and W, respectively.

LSTM cell can be described by the following equations:

i; = o(Uix; + Wih,_,) 4)
f; = o(Urx: + Wrh: ) ()
0; = o(Uox; + Wyh,_1) (6)
& = tanh (U.x; + Weh;_;) 7)
c=f c-1tic ° & ®)
h; = o;°tanh(c;) 9)

where ° denotes the element-wise product, & and c; de-
note cell state and final cell state, and h; denotes hidden
state. o(-) and tanh(-) denote sigmoid and tanh activation
functions. For a given scalar (denoted as a), the computations
of o(-) and tanh(-) are described as follows:

g(a) = L

T l+4e (10)
el — o0

tanh(a) = prgmpe (11)

It can be seen that h; and c; are affected by h¢_; and c¢;_1,
and the computations of h; and c; are recursive. We use Ly (*)
and L, () to represent the computations, which are described
as (12) and (13).

h; = Ly (x;, h_1, ¢t_1;6p) (12)

¢t = Le (X, he1, €16 (13)

where 6;, and 6, denote the parameters of Ly (-) and L ().
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Fig. 2 — The structure of LSTM cell.

3.2. The development of multi-level LSTM

While data-driven methods are applied in developing a pre-
dicting model for product yield, researchers mainly utilize
feed quality, catalyst characteristics, and operating condi-
tions (Ma et al., 2001; Wang, 2015; Deng et al., 2011; Jiang
et al, 2015; Su et al., 2016a). The models which use historical
product yield as input variables is hard to be used in ad-
justing the controllable operating variables. Based on data
analysis and expert experience, a few variables of feed (2
quality are filtered from the LIMS system, such as feed den-
sity, weight of carbon residue as well as the mass weight
percentage of aromatics, and lots of operating variables are
selected from the DCS system, such as temperatures and
pressures in all units. According to the characteristics of FCC,
the ML-LSTM is proposed, and its structure is shown in Fig. 3.
The ML-LSTM is composed of Input Layer, LSTM Layer, FC
Layer and Output Layer. LSTM Layer consists of Layer LSTM-
I, Concat-Layer, and Layer LSTM-II. X! denotes the input
variables of LIMS data, X? denotes the input variables of DCS
data, and Y denotes the outputs of our model. N denotes the
number of time steps.

ML-LSTM receives data of different time scales through
the input layer and extracts features through the LSTM layer
and the fully connected layer. The output layer gives the
predicted value. The prediction of our model can be de-
scribed as follows:

Y =fX, X%a) (14)

where a denotes all the parameters of our model.
The Input Layer, LSTM Layer, FC Layer and Output Layer
of our model are detailed as follows.

(1) Input Layer
The Input Layer of the ML-LSTM receives LIMS and DCS
data, of which sampling time interval are 60 min and
5min, respectively, in the paper. The input variables X!
and X? on training set can be shown in Fig. 4. The row and
column denote the time and feature dimensions, re-
spectively. The shape of X! is (N *m), and the shape of X¢
is (12N *n).
In Fig. 4, the numbers of records of LIMS and DCS data are
N and 12 N, respectively. LIMS data in green box and DCS

—

data in yellow box are at the same time period. The re-
lationship between the LIMS and DCS data in time do-
main is shown in Fig. 5.

T; denotes the ith time period. At T;, we collect 1 record of
LIMS data and 12 records of DCS data, which are denoted
as x} and (X%i_11, Xi_10, - Xio;). X} has the same beginning
time with x%;_;, and the same ending time with x%,;.
When predicting the gasoline yield at T, the input vari-
ables of our model consist of x! and (X%i_11, Xbsi_10, -+ Xini)-
LSTM Layer

LSTM Layer consists of Layer LSTM-I, Concat-Layer and
Layer LSTM-II. In the Layer LSTM-I, two LSTM structures
are used to process LIMS and DCS data, respectively, and
the computations are described as follows.

hd, if i=0
hi = Tl ol .aly s ; (15)
Lh (Xl', hi—l! Ci_1, Gh), lfl <i1<N
l . .
c, if i=0
o= IR I EA N . (16)
LC (xi, hi—l! Ci_1, GC), lfl <1<N
d W, i j=0
hj = d pd  d .pdy if1oi : : (17)
Ly (X), hjflr Cj,l, eh), 1)‘121 - 11 <J< 121
Cd _ Co, l.f ) =0
T | Le(xd, Ry, o4 09), if12i — 11 < j < 12 (18)

where 6}, 6, 67 and 8¢ denote parameters, and hl,c), hd
and c{ are initial vectors, of which the elements are set as
0.

Then, the alignment of various variables with different
time scales is carried out in the Concat- Layer, which is
shown in Fig. 6.

At T, x! and (X%pi_11, Xi_10, -, X%;) are processed by Layer
LSTM-I, and h! and h&,; are obtained, which can denote the
accumulated information of LIMS and DCS data at the end
of ith time period, respectively. The concatenation of h|
and hd,; can be used to denote the accumulated in-
formation of all input variables. The concatenation can be
described as follows.

hf = Concat (h!, hl,) 19)
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Fig. 3 - The structure of ML-LSTM.
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Fig. 4 — Presentation of LIMS and DCS time series data on training set.

Then, we use Dropout method to process hf, and get h;".
The calculation is shown in Eq. (20).

=~ C

h;

=t ° hf (20)

where 1; is a vector of independent Bernoulli random
variables, which has the same dimension with hf, and
each variable has a probability p of being 1.

Furtherly, the computation of Layer LSTM-II can be de-
scribed as Egs. (21) and (22).

RO — h,if i=0 1)
‘ Ly (h{, h(™, ™6, if1<i<N
W o
C.(H) = N o If 1=0 (22)
' Le(h{, h™, ;o) ifl<i<N

-

where 6,(111) and GC(H) denote parameters, and hgl) and cgl) are
initial vectors, of which the elements are set as 0.

FC Layer

This section describes the FC Layer. Let R(-) and N ()
denote activation function and Layer Normalization, re-
spectively. w®) and b® denote the weights and biases at
the first fully connected layer, and w® and b denote the
weights and biases at the second fully connected layer.
FC Layer can be described as (23):

FC(h{) = Rw®@ (N RWVR{ + b)) + b?) (23)
In Eq. (23), N (-) and R(-) are described as follows:
zZ—u
N = °
@="""r+p (24
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d d d
and (X{5i_11, X{9i_10, - X12i)-

a,if a=0
R(a)={pa,if a<0} (25)

where z denotes the vector of outputs from the first fully
connected layer, u denotes mean value of z, v denotes
variance of z, § and y are defined as the bias and gain
parameters of the same dimension as z, respectively, p is
learnable parameter, and a is a scalar.

(4) Output Layer

y; denotes the final output of model, which is the pre-
dicted value of gasoline yield at ith time period, and is one
value of ¥.

3.3. The computation of training and predicting of
ML-LSTM

(1) In the training phase
The whole calculation of the neural network on the
training set is described as follows:

h = Gn,xL_,...x}, hl, c);el) (26)
hly = Gn(Xly X1, X{, h§, ¢5; Of) (27)
h{" = L, (ri°Concat (h}, hiy), h;, c;; 6") (28)
5, = FC(h) (29)

where ©}, and ©¢ denote parameters.
It can be seen that the calculation of hl(H) is recursive. The
prediction of our model is consistent with the time con-

tinuity of large-scale process manufacturing device. To
find the non-linear map (f (-) shown in Eq. (1)) as accurate
as possible, in the training phase, the difference between
predicted value and real value is measured by (30).

- 1N 5
L(Y,Y)= ﬁgl 0 - ) (30)

where Y denotes all the real values of gasoline yield, and
y; is the ith real value.
(2) In the predicting phase

The first record of the test set and the last record of the
training set are adjacent in time domain. The kth predicted
value in the test set is denoted as §,,,, and the calculation
can be described as follows:

Fusr = FC(Ln (vsx°Concat (h 43, hfz(mk)), h(@rk_p CSII-)rk—l; ")) (32)

@ .
r_1 and ¢y, _, are:

where, Rk, hy 1, hiL

hiysk = Gh (XNt X4k, Xiv41, BN, Clv; ©F) (32)
hy i = G, ®d k) xfz(N+k)71"“’xI%+1’ hi, cf; ©f) (33)
M1 = Gn (A Pyt P, B, €5 000) (34)
cg\llllk—1 =G (ﬁ13+k: ﬁ1§+k—1:---yﬁ;+1: hgl)y Cgl); 951")) (35)

The computations of hi,y, h) h,  and cl, ; are

recursive, and the prediction process of our model on the test
set can be shown in Fig. 7.
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Fig. 7 - Prediction of ML-LSTM model on the test set.

In Fig. 7, hy and cy are the simple representation of ML-
LSTM hidden states and final cell states on training set, and
they are essential for the prediction of our model on test set.
3.4.  Apply ML-LSTM to predict gasoline yield
Fig. 8 shows the steps of ML-LSTM offline modeling and on-
line prediction.

(1) Offline modeling
Step 1Collect LIMS data and DCS data, interpolate LIMS
data, smooth DCS data and then obtain training dataset.
Step 2Use Z-score to standardize each feature of training
set, and it is described as Eqg. (36).

. 0 _ x0)
20 = X

(36)

1

el oy

where N denotes the length of training set, xio) denotes

the value of the jth variable at the ith moment, and x0)
denotes the mean value of the jth variable.

Step 3Convert the train dataset into the form of S*B*D,
where S is the sequence length of one sample, B is the
batch size, and D is the number of features.

Step 4Choose the suitable optimizer and hyper para-
meters, and train the model.

Step 5Calculate the loss in Eq. (30). If the loss is less than

Input training set ‘ ‘ Input test set ‘

i l

Normalize the training data

‘ Normalize the test data

i l

Train the ML-LSTM Parameters: | Obtain the output J; of
ML-LSTM

Whether the
loss < T

Output the parameters for
the ML-LSTM

Offline modeling Online prediction

Fig. 8 - Steps of gasoline yield prediction based on
ML-LSTM.

the threshold or the iteration reaches the maximum
number, stop training.
Step 6: Save the parameters of model.

(2) Online prediction

Step 1: Process the collected data, and obtain the test
dataset.

Step 2: Standardize the test dataset according to the
means and variances of features in the training set.

Step 3: Predict gasoline yield using the method shown
in Fig. 7.

4. Experiments

4.1. Experiment setup

Theoretically, the data applied here should have the same
starting time as FCCU, but this requirement is difficult to be
satisfied in data collection. In this paper, the starting time of
data collected from a refinery is set as 1, and the data is
preprocessed as follows: Firstly, the DCS data sets with
sampling interval of 5 min and 60 min are obtained by sliding
time window and calculating the mean value of the window.
Secondly, the LIMS data set with sampling interval of 60 min
is obtained by B-spline interpolation. Then, the LIMS and DCS
sets, of which durations are 2256 h, are split into training set
and test set. The first 2088 h of data sets are used as training
set, and the next 168 h are used as test set. In addition, the
batch-size of the training and test sets are set as 8 and 1,
respectively.

Five models are built in the paper, and are listed as fol-
lows. 1) MLP is a three-layer neural network, which uses LIMS
and DCS data with sampling interval of 60 min as input; 2)
LSTM with DCS data is a deep neural network based on
LSTM, which uses DCS data with sampling interval of 5 min
as input; 3) LSTM with LIMS data is a deep neural network
based on LSTM, which uses LIMS data with sampling interval
of 60min as input; 4) LSTM with AVG data, which has the
same structure as ML-LSTM, uses LIMS and DCS data with
sampling interval of 60 min as input; 5) ML-LSTM is based on
LIMS data with sampling interval of 60 min and DCS data
with sampling interval of 5 min

The results of the five models are analyzed and compared.
Firstly, the prediction result of LSTM with LIMS data is ana-
lyzed. Secondly, the effectiveness of LSTM structure is
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Table 1 - Performance of all models on the training set and test set.

Model RMSE PearsonR R?

Train Test Train Test Train Test
MLP 0.6432 0.7133 0.9012 0.5271 0.7814 0.1653
LSTM with LIMS data 0.9560 0.8194 0.7432 0.2865 0.5172 -0.1014
LSTM with DCS data 0.5632 0.6066 0.9161 0.6533 0.8324 0.3964
LSTM with AVG data 0.6214 0.6236 0.8990 0.6622 0.7960 0.3620
ML-LSTM 0.5732 0.5851 0.9100 0.7671 0.8264 0.4384

verified by comparing the prediction results of MLP, LSTM
with AVG data and LSTM with DCS data. Then, the differ-
ences of prediction results between LSTM with DCS data and
LSTM with AVG data are analyzed. Finally, the effectiveness
of the proposed method is verified by comparing the results
of ML-LSTM and other models.

What’s more, we use Adam as optimizer, and set the
alphal, alpha2 and learning rate of Adam as 0.9, 0.99 and
0.001, respectively. The weight decay of ML-LSTM, LSTM with
AVG data, MLP, LSTM with LIMS data and LSTM with DCS
data are 0.00003, 0.000015, 0.00002, 0.00002, 0.00002, respec-
tively.

4.2. Evaluation criterion

The criteria to compare performance are Root Mean Square
Error (RMSE), Pearson correlation coefficient (PearsonR) and R
square (R?).

RMSE represents the absolute error between the predic-
tion and the real values, and reflects the accuracy of the
model on the test set. RMSE is calculated as follows.

[1 n o
RMSE = \H iol 0 -9 (37)

where n is the number of samples, y, is the ith real value, and
¥ is the ith predicted value.

PearsonR measures the relationship between the real va-
lues and the predicted values, it is computed as (38).

Ly (}’i -9) (}71 -9
I (0 — V2T O - 9

where y denotes the mean value of the real values, and § is
the mean value of the predicted values. The value of PearsonR
is between -1 and 1. The closer its value is to 1, the more
relevant the predicted value is to the real data.

R? reflects the goodness of the model fitness, and it is
calculated as (39).

o =9
RNV ES)E
The maximum value of R? is 1. The closer its value is to 1,
the better model fits.

PearsonRk =

(38)

R=1- (39)

4.3. Experiment results

Table 1 shows the RMSE, PearsonR and R? of MLP, LSTM with
LIMS data, LSTM with DCS data, LSTM with AVG data, and
ML-LSTM on the training set and test set.

It can be seen that the RMSE of the ML-LSTM model is
0.5732 on the training set, which shows that the ML-LSTM
model can fit the gasoline yield well, while the RMSE of the
ML-LSTM model is 0.5851 on the testing set, and the error is
smaller than other models. It can be seen that ML-LSTM has
better prediction ability. On the training set and the test set,
PearsonR of ML-LSTM is 0.91 and 0.7667, respectively. The ML-
LSTM model can accurately fit and predict the trend of ga-
soline yield over time. R? of ML-LSTM on the test set is 0.4384,
which is larger than other approaches. ML-LSTM gets better
performance.

The prediction results of MLP, LSTM with LIMS data, LSTM
with DCS data, LSTM with AVG data and ML-LSTM on the test
set are shown in Fig. 9. It can be seen that LSTM with LIMS
data can only roughly predict the trend of gasoline yield over
time. Although MLP, LSTM with DCS data and LSTM with
AVG data can predict the trend of gasoline yield over time
well, the accuracy is still insufficient. ML-LSTM accurately
predicts the values and trend of gasoline yield over time.
Therefore, our approach shows a competitive advantage.

4.4.  Analysis and discussion

LSTM with LIMS data gets poor performance compared with
MLP on the test set. The reasons may be that LSTM with LIMS
data ignores operating variables and is based on poor-quality
data. However, LSTM with LIMS data can roughly predict the
trend of gasoline yield over time, showing that LIMS data is
helpful. Furtherly, LSTM with DCS data and LSTM with AVG
data show great advantages in the prediction of gasoline
yield. Obviously, it is easier for LSTM structure to find the
relationship between factors and gasoline yield.

LSTM with AVG data significantly outperforms LSTM with
DCS data on PearsonR. It can be seen that it is helpful to
capture the trend of gasoline yield over time by combining
LIMS and DCS data. However, RMSE of LSTM with AVG data is
higher than RMSE of LSTM with DCS data. It is inferred that
the DCS data with high sampling frequency can provide
more information for the model.

ML-LSTM, which uses LIMS data, DCS data with high
sampling frequency, and LSTM structure, gets the best per-
formance. It is obvious that ML-LSTM with different sam-
pling frequencies data performs an excellent ability to
capture the relationship between various factors and gaso-
line yield.

To analyze the effectiveness of ML-LSTM, the hidden
states of ML-LSTM and LSTM with AVG data on the testing
set are extracted to calculate PearsonR between each feature
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Fig. 9 - Prediction results of all models on the test set. (a) Prediction result of MLP. (b) Prediction result of LSTM with LIMS
data. (c) Prediction result of LSTM with DCS data. (d) Prediction result of LSTM with AVG data. (e) Prediction result of

ML-LSTM.

in the hidden state and the gasoline yield. The results are
shown in Fig. 10, where the larger values are represented by
darker lines, and the smaller values are represented by
lighter lines. It can be seen that the correlation between ML-
LSTM hidden state and gasoline yield has more dark lines
than the correlation between LSTM hidden state and gaso-
line yield.

The histogram to compare the difference is shown in
Fig. 11, where the horizontal axis and the vertical axis re-
present the Pearson correlation coefficient and the number
of features, respectively. In Fig. 11(a), the correlation is cen-
tered on 0. Fig. 11(b) shows a bimodal distribution of corre-
lation, with peaks of 0.5 and - 0.5. On the whole, ML-LSTM
shows a great competitive advantage in feature extraction.
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Fig. 10 - PearsonR between features in the hidden state and gasoline yield on the test set: (a) PearsonR between hidden state of
LSTM with AVG data and gasoline yield, (b) PearsonR between hidden state of ML-LSTM and gasoline yield.
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Fig. 11 - Histogram of PearsonR: (a) histogram of PearsonR
between hidden state of LSTM with AVG data and gasoline
yield, (b) histogram of PearsonR between hidden state of ML-
LSTM and gasoline yield.

Figs. 10 and 11 demonstrate that ML-LSTM is superior to
LSTM model in feature extraction.

5. Conclusions

According to the characteristics of FCCU, ML-LSTM is pro-
posed to predict the gasoline yield in this paper. Firstly, a
special network structure is considered to align the input
variables with different collection frequencies in the time
domain. Secondly, LSTMs with different time scales are
stacked to extract high-level representations from multi
variables, and a novel training method is applied to help the
model to capture the long-term dependencies in the data of
FCCU. These experiments illustrate that compared with the
LSTM model, RMSE of ML-LSTM is lower, and the Pearson
correlation coefficient and R-square of ML-LSTM are higher.
In addition, the correlation between features extracted by
our approach and gasoline yield is calculated and analyzed to
verify the model performance. The further study will focus

on explaining the impact process of various factors on pro-
duct yields in the time domain.
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