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a b s t r a c t   

Data-driven method has been widely used in Fluid Catalytic Cracking (FCC) process 

modeling. However, due to the complexity of chemical process both in time and spatial 

domain, how to reflect the time and spatial characteristics of FCC units and build corre

sponding model is important to construct a better model for the gasoline yield prediction. 

In this paper, a special neural network structure was developed to deal with the input 

variables with different time scales considering the collection characteristics of various 

variables, as well as the time continuity of large-scale process manufacturing units, 

LSTMs with different time scales are stacked to extract temporal and spatial features to 

help capture the relationship between influencing factors and product yield. The char

acteristics of FCC process are also fully reflected in data processing and building model. It 

is demonstrated from the conclusions that the new model developed in this paper per

forms better than the traditional LSTM networks, which will be of great help to the in

telligent upgrading of the FCC process. 

© 2022 Institution of Chemical Engineers. Published by Elsevier Ltd. All rights reserved.     

1. Introduction 

Fluid Catalytic Cracking (FCC) is one of the most important 
chemical processes in the oil and gas industry. At present, 30 
% of diesel and 70 % of gasoline in China are from the FCC 
process (Souza et al., 2018; Salvado et al., 2017; Lu et al., 2018; 
Yang et al., 2017), thus it is significant to build an accurate 
predicting model for improving the utilization rate of feed oil 
and the yield of high-value products. However, FCC is a 
highly complex process affected by many non-linear and 
underlying interactions. Numerous factors, such as feed 
quality, catalyst characteristics, as well as operating condi
tions, will affect the reaction process and product yield. In 
this case, it is a complex task to build a chemical process 
model to analyze the relationship between numerous factors 
and product yield. Different kinds of methods have been 

proposed to handle the product yield predicting. These 
methods can be classified into two categories: mechanism- 
based methods and data-driven methods. Mechanism-based 
methods ignore many factors, which might be hard to com
pletely simulate the chemical process, while data-driven 
methods could draw the relationship between numerous 
factors and product yield, which have been paid more and 
more attention though the mechanisms of the reactions are 
unclear or too complicated. 

As one of the data-driven methods, artificial neural net
work (ANN) is skilled in dealing with non-linear problems 
and has been widely used in the chemical process modeling 
(Ma et al., 2001; Wang, 2015; Deng et al., 2011; Jiang et al., 
2015). Various methods have been proposed to improve the 
performance of ANN and can be summarized as the fol
lowing two categories. The first one is to adjust the hyper 
parameters by optimization algorithms, which could accel
erate the convergence speed, and avoid the model to fall into 
local optimum. For example, the genetic algorithm(GA) and 
particle swarm optimization (PSO) methods are used to 
search the initial value and threshold of BP neural network 
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respectively in Su et al., (2016a) and Gao et al. (2017)., while 
the GA and PSO methods are applied to optimize BP neural 
network in Su et al. (2016b), which indicates that the per
formance of GA-BP is better than PSO-BP. The second cate
gory is the hybrid of ANN and mechanism model. A neural 
network model is developed to fit the differences between 
the lumped model results and the real values of product 
yield, then the results of lumped are modified (Ouyang and 
Liu, 2017). Furthermore, the results of the lumped model are 
jointed in the input variables of the neural network model to 
predict product yield in Yang et al. (2020). However, these 
methods still have some shortcomings. Adjusting the hyper 
parameters of ANN cannot improve the fitting ability for the 
set of hypothesis functions, although it can help the re
searcher find better fitting functions from a given hypothesis 
space. The hybrid of neural network and mechanism model 
has strict requirements on data quality, although it can im
prove the prediction accuracy. In the actual production pro
cess, it is difficult to satisfy its requirements. In addition, the 
chemical process is a continuous process in the time domain, 
and temporal features of time series data should be con
sidered as well, while ANN ignores the temporal features in 
the time domain. 

To improve the performance of the above methods, Long 
Short-Term Memory (LSTM) model which could extract 
temporal features, is adopted for chemical process modeling 
(Ke et al., 2017; Wang et al., 2018). A deep bidirectional LSTM 
is developed for predicting product yield in ref (Zhang et al., 
2018). Moreover, a WAR-LSTM model is proposed to predict 
product yield in ref (Zhang et al., 2019)., where correction 
information and prior knowledge are extracted from histor
ical yield for the predictive model. However, methods in ref 
(Zhang et al., 2018, 2019). cannot be applied to adjust con
trollable operating variables, which is significant for the 
guidance to improve the production results in the actual 
production process. It is hard to obtain the future variables 
which are implemented in the deep bidirectional LSTM in  
Zhang et al. (2018). In Zhang et al. (2019), the historical values 
are taken as the input variables, which will cause two bad 
effects. On the one hand, the weight of controllable operating 
variables in the model will be reduced, since the difference 
between the product yields at the adjacent time is very small. 
On the other hand, it is difficult to adjust the parameters in a 
short time, since the model can only predict the yield at next 
moment. Besides, the recurrent neural network for chemical 
process modeling usually uses limited length time series, 
which cannot reflect the time delay characteristics of various 
factors in large-scale equipment, such as Fluid Catalytic 
Cracking Units (FCCU). 

While collecting FCCU data, the values of various oper
ating conditions in the distributed control system (DCS) are 
recorded in real-time, and the values of feed quality in the 
laboratory information management system (LIMS) are 
manually recorded, which leads to a much larger recording 
interval of LIMS than that of DCS. DCS and LIMS data are 
used as input variables and these various variables need to 
be aligned in the time domain. According to the character
istics of FCCU, we propose a Multi-Level LSTM (ML-LSTM). 
Input variables with different time scales will be aligned 
through a special network structure, and significant tem
poral as well as spatial features could be extracted by 
stacking multiple LSTM structures. The main contributions 
are as follows: 

(1) A special network structure is built to deal with the dif
ference of data recording frequency, and takes the more 
comprehensive factors into consideration, which influ
ence on product yield.  

(2) A new neural network model is proposed to predict the 
product yield of FCCU, which reflects the time continuity 
of the production process of large-scale process manu
facturing units.  

(3) The effectiveness of ML-LSTM is proved by analyzing the 
relationship between the product yield and the features, 
which are extracted by multiple LSTM structures. 

In this paper, the principle of FCCU, as well as the col
lection and storage methods of production data, and analysis 
on gasoline yield used in the paper are introduced in Section 
2. In Section 3, we present the structure of LSTM, and the ML- 
LSTM is proposed to predict gasoline yield according to the 
characteristics of FCCU. In Section 4, the actual process data 
from FCCU are utilized to verify the effectiveness of our 
model, and the prediction results are analyzed and dis
cussed. Finally, the concluding remarks are pointed out in  
Section 5 of this paper. 

2. Problem formulation 

2.1. Overview of FCC process 

The main purpose of FCCU is to convert heavy oil to high- 
value light transportation fuels in the condition of suitable 
temperature, pressure, and catalyst. There are three sub
systems in FCCU: reactor-regenerator system, fractionation 
system, and absorption-stabilization system. The main task 
of the reactor-regenerator system is to convert feed oil, wax 
oil, and residual oil to high-value fuels. In the fractionation 
system, according to the different boiling points, the high- 
temperature oil and gas from the reactor-regenerator system 
are cut into rich oil, naphtha, diesel oil and slurry oil. In the 
absorption-stabilization system, naphtha and rich oil are 
separated to dry gas, gasoline, and liquid hydrocarbons ac
cording to different solubility in liquids. 

Among the above products from FCCU, gasoline is a high- 
value product and an important engine fuel. To build the 
prediction model of gasoline yield is the key research goal in 
the paper. In the process of FCC, feed quality, catalyst char
acteristics, and operating conditions have an important im
pact on the gasoline yield (Ma et al., 2001). Feed quality and 
catalyst characteristics mainly include aromatics, saturates, 
resins and coke. The operating conditions mainly consist of 
temperature and pressure variables. 

2.2. Collection methods and analysis on FCCU data 

LIMS and DCS systems are widely used in collecting FCCU 
data. The LIMS system mainly manages the data of feed oil 
and regenerated catalysts, while the DCS system mainly re
cords operating variables and manage the mass bal
ance data. 

2.3. The goals for modeling 

The ultimate goal of chemical process modeling is that the 
model can be used to adjust operating variables, and then 
improve product yield. The premise is that a prediction 
model for product yield needs to be built, of which the 
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predicted result is closest to the real value. It can be defined 
as follows: 

L X Yfargmin ( ( ), )
f (1) 

where X denotes the time series data of various factors, Y
denotes the real values of product yield, f ( ) denotes the re
lationship between various factors and product yield, and 
L ( ) measures the difference between the predicted values 
and the real values. 

2.4. Challenges for modeling 

The challenges of building a gasoline yield predicting model 
are as follows: Firstly, in the production process of FCCU, it is 
hard to clarify which parameters affect the gasoline yield at 
each time, since the feed oil stays in the FCCU for a while and 
the operating conditions are dynamic. Secondly, due to the 
different collection frequency of data, when taking the DCS 
and LIMS data as input variables, it is essential to align 
variables in the time domain. In addition, while applying the 
historical yields as the input variables, the model weights of 
the controllable operating variables might be too small to be 
analyzed. 

3. Multi-level LSTM models 

Long Short-Term Memory (LSTM) is a typical recurrent 
neural network and can extract the temporal features in time 
series data. However, there are large differences between 
DCS data and LIMS data on the collection frequency. In this 
case, various variables need to be aligned in the time domain 
while being implemented as input variables. Multi-level 
LSTM (ML-LSTM) is proposed in the paper, where a special 
network is built to deal with the input variables with dif
ferent collection frequencies, and a novel training method is 
used to help the model to capture the long-term de
pendencies in FCCU data. 

3.1. The structure of long short-term memory 

As a typical recurrent neural network, LSTM (Hochreiter and 
Schmidhuber, 1997) is successfully applied in many tasks, 
such as speech recognition and natural language processing 
(Zhang and Yang, 2018; Tian et al., 2019). The structure of 
LSTM is shown in Fig. 1. 

In Fig. 1, ht is the output of LSTM at tth time step, and is 
the accumulation of all input variables, such as x1, x2, xt 1, xt. 
The computations of ht and ct are affected by each input 

variable. We use G ( )h and G ( )c to denote the relationship 
between …x x x x h c( , , , , , , )t t 1 2 1 0 0 and ht as well as ct, and they 
can be described as follows: 

= …x x x x h ch G ( , , , , , , ; )t t t hh 1 2 1 0 0 (2)    

= …x x x x h cc G ( , , , , , , ; )t t t cc 1 2 1 0 0 (3) 

where h and c denote the parameters of G ( )h and G ( )c , 
respectively. 

A LSTM cell is the calculation at each time step, and its 
structure is shown in Fig. 2. The cell has input to input gate, 
forget gate, output gate and cell state connections, and they 
are parameterized by weight matrices Ui, Uf , Uo and Uc, re
spectively. It also has hidden state to input gate, forget gate, 
output gate and cell state connections, and they are para
meterized by weight matrices Wi, Wf , Wo and Wc, respectively. 

LSTM cell can be described by the following equations: 

= +i U x W h( )t i t i t 1 (4)    

= +f U x W h( )t f t f t 1 (5)    

= +o U x W h( )t o t o t 1 (6)    

= +c U x W htanh( )t c t c t 1 (7)    

= ° + °c f c i ct t t t t1 (8)    

= °h o ctanh( )t t t (9)  

where ° denotes the element-wise product, ct and ct de
note cell state and final cell state, and ht denotes hidden 
state. ( ) and tanh( ) denote sigmoid and tanh activation 
functions. For a given scalar (denoted as a), the computations 
of ( ) and tanh( ) are described as follows: 

=
+

a
e

( )
1

1 a (10)    

=
+

a
e e
e e

tanh( )
a a

a a (11)  

It can be seen that ht and ct are affected by ht 1 and ct 1, 
and the computations of ht and ct are recursive. We use L ( )h

and L ( )c to represent the computations, which are described 
as (12) and (13). 

=h x h cL ( , , ; )t h t t t h1 1 (12)    

=c x h cL ( , , ; )t c t t t c1 1 (13) 

where h and c denote the parameters of L ( )h and L ( )c . 

Fig. 1 – The structure of LSTM. t denotes all the time steps, xt denotes input variables, ht and ct denote the hidden state and 
cell state of LSTM, respectively, h0 is the initial value of hidden state, and c0 is the initial value of cell state. 
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3.2. The development of multi-level LSTM 

While data-driven methods are applied in developing a pre
dicting model for product yield, researchers mainly utilize 
feed quality, catalyst characteristics, and operating condi
tions (Ma et al., 2001; Wang, 2015; Deng et al., 2011; Jiang 
et al., 2015; Su et al., 2016a). The models which use historical 
product yield as input variables is hard to be used in ad
justing the controllable operating variables. Based on data 
analysis and expert experience, a few variables of feed 
quality are filtered from the LIMS system, such as feed den
sity, weight of carbon residue as well as the mass weight 
percentage of aromatics, and lots of operating variables are 
selected from the DCS system, such as temperatures and 
pressures in all units. According to the characteristics of FCC, 
the ML-LSTM is proposed, and its structure is shown in Fig. 3. 
The ML-LSTM is composed of Input Layer, LSTM Layer, FC 
Layer and Output Layer. LSTM Layer consists of Layer LSTM- 
I, Concat-Layer, and Layer LSTM-II. Xl denotes the input 
variables of LIMS data, Xd denotes the input variables of DCS 
data, and Ŷ denotes the outputs of our model. N denotes the 
number of time steps. 

ML-LSTM receives data of different time scales through 
the input layer and extracts features through the LSTM layer 
and the fully connected layer. The output layer gives the 
predicted value. The prediction of our model can be de
scribed as follows: 

=Y X Xfˆ ( , ; )l d (14) 

where denotes all the parameters of our model. 
The Input Layer, LSTM Layer, FC Layer and Output Layer 

of our model are detailed as follows.  

(1) Input Layer 
The Input Layer of the ML-LSTM receives LIMS and DCS 
data, of which sampling time interval are 60 min and 
5 min, respectively, in the paper. The input variables Xl

and Xd on training set can be shown in Fig. 4. The row and 
column denote the time and feature dimensions, re
spectively. The shape of Xl is (N * m), and the shape of Xd

is (12 N * n). 
In Fig. 4, the numbers of records of LIMS and DCS data are 
N and 12 N, respectively. LIMS data in green box and DCS 

data in yellow box are at the same time period. The re
lationship between the LIMS and DCS data in time do
main is shown in Fig. 5. 
Ti denotes the ith time period. At Ti, we collect 1 record of 
LIMS data and 12 records of DCS data, which are denoted 
as xi

l and …x x x( , , , )i
d

i
d

i
d

12 11 12 10 12 . xi
l has the same beginning 

time with x i
d
12 11, and the same ending time with x i

d
12 . 

When predicting the gasoline yield at Ti, the input vari
ables of our model consist of xi

l and …x x x( , , , )i
d

i
d

i
d

12 11 12 10 12 .  
(2) LSTM Layer 

LSTM Layer consists of Layer LSTM-I, Concat-Layer and 
Layer LSTM-II. In the Layer LSTM-I, two LSTM structures 
are used to process LIMS and DCS data, respectively, and 
the computations are described as follows. 

=
=

h
h

x h c

if i

L if i

, 0

( , , ; ), 1 N
i
l

l

h i
l

i
l

i
l

h
l

0

1 1
(15)    

=
=

c
c

x h c

if i

L if i

, 0

( , , ; ), 1 N
i
l

l

c i
l

i
l

i
l

c
l

0

1 1
(16)    

=
=

h
h

x h c

if j

L if i j i

, 0

( , , ; ), 12 11 12
j
d

d

h j
d

j
d

j
d

h
d

0

1 1
(17)    

=
=

c
c

x h c

if j

L if i j i

, 0

( , , ; ), 12 11 12
j
d

d

c j
d

j
d

j
d

c
d

0

1 1
(18) 

where h
l , c

l, h
d and c

d denote parameters, and hl
0, cl

0, hd
0

and cd
0 are initial vectors, of which the elements are set as 

0. 
Then, the alignment of various variables with different 
time scales is carried out in the Concat- Layer, which is 
shown in Fig. 6. 
At Ti, xi

l and …x x x( , , , )i
d

i
d

i
d

12 11 12 10 12 are processed by Layer 

LSTM-I, and hi
l and h i

d
12 are obtained, which can denote the 

accumulated information of LIMS and DCS data at the end 
of ith time period, respectively. The concatenation of hi

l

and h i
d
12 can be used to denote the accumulated in

formation of all input variables. The concatenation can be 
described as follows. 

=h h hConcat ( , )i
c

i
l

i
d
12 (19) 

Fig. 2 – The structure of LSTM cell.  
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Then, we use Dropout method to process hi
c, and get hi

c
. 

The calculation is shown in Eq. (20). 

= °h r hi
c

i i
c (20)  

where ri is a vector of independent Bernoulli random 
variables, which has the same dimension with hi

c, and 
each variable has a probability p of being 1. 
Furtherly, the computation of Layer LSTM-II can be de
scribed as Eqs. (21) and (22). 

=
=

h
h

h h c

if i

L if i

, 0

( , , ; ), 1 N
i

h i
c

i i h

(II) 0
(II)

1
(II)

1
(II) (II) (21)    

=
=

c
c

h h c

if i

L if i

, 0

( , , ; ), 1 N
i

c i
c

i i

(II) 0
(II)

1
(II)

1
(II)

c
(II) (22)  

where h
(II) and c

(II) denote parameters, and h0
(II) and c0

(II) are 
initial vectors, of which the elements are set as 0.  

(3) FC Layer 
This section describes the FC Layer. Let R ( ) and N ( )
denote activation function and Layer Normalization, re
spectively. w(1) and b(1) denote the weights and biases at 
the first fully connected layer, and w(2) and b(2) denote the 
weights and biases at the second fully connected layer. 
FC Layer can be described as (23): 

N= + +h w h b bR R wFC( ) ( ( ( ( ))) )i i
(II) (2) (1) (II) (1) (2) (23)  

In Eq. (23), N ( ) and R ( ) are described as follows: 

N = ° +z
z u

v
( ) (24)    

Fig. 3 – The structure of ML-LSTM.  

Fig. 4 – Presentation of LIMS and DCS time series data on training set.  
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=
<

R a
a if a

a if a
( )

, 0

, 0 (25) 

where z denotes the vector of outputs from the first fully 
connected layer, u denotes mean value of z, v denotes 
variance of z, and are defined as the bias and gain 
parameters of the same dimension as z, respectively, is 
learnable parameter, and a is a scalar.  

(4) Output Layer 

ŷi denotes the final output of model, which is the pre
dicted value of gasoline yield at ith time period, and is one 
value of Ŷ . 

3.3. The computation of training and predicting of 
ML-LSTM   

(1) In the training phase 
The whole calculation of the neural network on the 
training set is described as follows: 

= …h x x x h cG ( , , , , , ; )i
l

h i
l

i
l l l l

h
l

1 1 0 0 (26)    

= …h x x x h cG ( , , , , , ; )i
d

h i
d

i
d d d d

h
d

12 12 12 1 1 0 0 (27)    

= °h r h h h cL Concat( ( , ), , ; )i h i i
l

i
d

i i h
(II)

12 1
(II)

1
(II) (II)

(28)    

=y hFCˆ ( )i i
(II)

(29) 

where h
l and h

d denote parameters. 

It can be seen that the calculation of hi
(II) is recursive. The 

prediction of our model is consistent with the time con

tinuity of large-scale process manufacturing device. To 
find the non-linear map ( f ( ) shown in Eq. (1)) as accurate 
as possible, in the training phase, the difference between 
predicted value and real value is measured by (30). 

L =
=

Y Y y y
N

( ˆ , )
1

( ˆ )
i

N

i i
1

2 (30)  

where Y denotes all the real values of gasoline yield, and 
yi is the ith real value.  

(2) In the predicting phase 

The first record of the test set and the last record of the 
training set are adjacent in time domain. The kth predicted 
value in the test set is denoted as +ŷN k, and the calculation 
can be described as follows: 

= °+ + + + + +y r h h h cFC L Concatˆ ( ( ( , ), , ; ))N k h N k N k
l

N k
d

N k N k h12( ) 1
(II)

1
(II) (II)

(31)  

where, +hN k
l , +h N k

d
12( ) , +hN k 1

(II) and +cN k 1
(II) are: 

= …+ + + +h x x x h cG ( , , , , , ; )N k
l

h N k
l

N k
l

N
l

N
l

N
l

h
l

1 1 (32)    

= …+ + + +h x x x h cG ( , , , , , ; )N k
d

h N k
d

N k
d

N
d

N
d

N
d

h
d

12( ) 12( ) 12( ) 1 1 (33)    

= …+ + + +h h h h h cG ( , , , , , ; )N k h N k
c

N k
c

N
c

N N h1
(II)

1 1
(II) (II) (II)

(34)    

= …+ + + +c h h h h cG ( , , , , , ; )N k c N k
c

N k
c

N
c

N N h1
(II)

1 1
(II) (II) (II)

(35)  

The computations of +hN k
l , +h N k

d
12( ) , +hN k 1

(II) and +cN k 1
(II) are 

recursive, and the prediction process of our model on the test 
set can be shown in Fig. 7. 

Fig. 5 – The relationship of LIMS and DCS data in time domain. xi
l denotes ith LIMS data, and x i

d
12 denotes i12 th DCS data.  

Fig. 6 – Alignment of input variables with different time scales. h hConcat ( , )l d
i 12i is the alignment result of xi

l

and …x x x( , , , )i
d

i
d

i
d

12 11 12 10 12 . 
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In Fig. 7, hN and cN are the simple representation of ML- 
LSTM hidden states and final cell states on training set, and 
they are essential for the prediction of our model on test set. 

3.4. Apply ML-LSTM to predict gasoline yield 

Fig. 8 shows the steps of ML-LSTM offline modeling and on
line prediction.  

(1) Offline modeling 
Step 1Collect LIMS data and DCS data, interpolate LIMS 
data, smooth DCS data and then obtain training dataset. 
Step 2Use Z-score to standardize each feature of training 
set, and it is described as Eq. (36). 

=
=

x

x
x

x

x

¯

( ¯ )
i
j i

j j

N n
N

i
j j

( )
( ) ( )

1
1

( ) ( ) 2 (36) 

where N denotes the length of training set, xi
j( ) denotes 

the value of the jth variable at the ith moment, and x̄ j( )

denotes the mean value of the jth variable. 
Step 3Convert the train dataset into the form of S B D* * , 
where S is the sequence length of one sample, B is the 
batch size, and D is the number of features. 
Step 4Choose the suitable optimizer and hyper para
meters, and train the model. 
Step 5Calculate the loss in Eq. (30). If the loss is less than 

the threshold or the iteration reaches the maximum 
number, stop training. 
Step 6: Save the parameters of model.  

(2) Online prediction 

Step 1: Process the collected data, and obtain the test 
dataset. 

Step 2: Standardize the test dataset according to the 
means and variances of features in the training set. 

Step 3: Predict gasoline yield using the method shown 
in Fig. 7. 

4. Experiments 

4.1. Experiment setup 

Theoretically, the data applied here should have the same 
starting time as FCCU, but this requirement is difficult to be 
satisfied in data collection. In this paper, the starting time of 
data collected from a refinery is set as 1, and the data is 
preprocessed as follows: Firstly, the DCS data sets with 
sampling interval of 5 min and 60 min are obtained by sliding 
time window and calculating the mean value of the window. 
Secondly, the LIMS data set with sampling interval of 60 min 
is obtained by B-spline interpolation. Then, the LIMS and DCS 
sets, of which durations are 2256 h, are split into training set 
and test set. The first 2088 h of data sets are used as training 
set, and the next 168 h are used as test set. In addition, the 
batch-size of the training and test sets are set as 8 and 1, 
respectively. 

Five models are built in the paper, and are listed as fol
lows. 1) MLP is a three-layer neural network, which uses LIMS 
and DCS data with sampling interval of 60 min as input; 2) 
LSTM with DCS data is a deep neural network based on 
LSTM, which uses DCS data with sampling interval of 5 min 
as input; 3) LSTM with LIMS data is a deep neural network 
based on LSTM, which uses LIMS data with sampling interval 
of 60 min as input; 4) LSTM with AVG data, which has the 
same structure as ML-LSTM, uses LIMS and DCS data with 
sampling interval of 60 min as input; 5) ML-LSTM is based on 
LIMS data with sampling interval of 60 min and DCS data 
with sampling interval of 5 min 

The results of the five models are analyzed and compared. 
Firstly, the prediction result of LSTM with LIMS data is ana
lyzed. Secondly, the effectiveness of LSTM structure is 

Fig. 7 – Prediction of ML-LSTM model on the test set.  

Fig. 8 – Steps of gasoline yield prediction based on 
ML-LSTM. 
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verified by comparing the prediction results of MLP, LSTM 
with AVG data and LSTM with DCS data. Then, the differ
ences of prediction results between LSTM with DCS data and 
LSTM with AVG data are analyzed. Finally, the effectiveness 
of the proposed method is verified by comparing the results 
of ML-LSTM and other models. 

What’s more, we use Adam as optimizer, and set the 
alpha1, alpha2 and learning rate of Adam as 0.9, 0.99 and 
0.001, respectively. The weight decay of ML-LSTM, LSTM with 
AVG data, MLP, LSTM with LIMS data and LSTM with DCS 
data are 0.00003, 0.000015, 0.00002, 0.00002, 0.00002, respec
tively. 

4.2. Evaluation criterion 

The criteria to compare performance are Root Mean Square 
Error (RMSE), Pearson correlation coefficient (PearsonR) and R 
square (R2). 

RMSE represents the absolute error between the predic
tion and the real values, and reflects the accuracy of the 
model on the test set. RMSE is calculated as follows. 

= =RMSE
n

y y
1

( ˆ )i
n

i i1
2 (37) 

where n is the number of samples, yi is the ith real value, and 
ŷi is the ith predicted value. 

PearsonR measures the relationship between the real va
lues and the predicted values, it is computed as (38). 
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where y denotes the mean value of the real values, and ŷ is 
the mean value of the predicted values. The value of PearsonR
is between − 1 and 1. The closer its value is to 1, the more 
relevant the predicted value is to the real data. 

R2 reflects the goodness of the model fitness, and it is 
calculated as (39). 
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The maximum value of R2 is 1. The closer its value is to 1, 
the better model fits. 

4.3. Experiment results 

Table 1 shows the RMSE, PearsonR and R2 of MLP, LSTM with 
LIMS data, LSTM with DCS data, LSTM with AVG data, and 
ML-LSTM on the training set and test set. 

It can be seen that the RMSE of the ML-LSTM model is 
0.5732 on the training set, which shows that the ML-LSTM 
model can fit the gasoline yield well, while the RMSE of the 
ML-LSTM model is 0.5851 on the testing set, and the error is 
smaller than other models. It can be seen that ML-LSTM has 
better prediction ability. On the training set and the test set, 
PearsonR of ML-LSTM is 0.91 and 0.7667, respectively. The ML- 
LSTM model can accurately fit and predict the trend of ga
soline yield over time. R2 of ML-LSTM on the test set is 0.4384, 
which is larger than other approaches. ML-LSTM gets better 
performance. 

The prediction results of MLP, LSTM with LIMS data, LSTM 
with DCS data, LSTM with AVG data and ML-LSTM on the test 
set are shown in Fig. 9. It can be seen that LSTM with LIMS 
data can only roughly predict the trend of gasoline yield over 
time. Although MLP, LSTM with DCS data and LSTM with 
AVG data can predict the trend of gasoline yield over time 
well, the accuracy is still insufficient. ML-LSTM accurately 
predicts the values and trend of gasoline yield over time. 
Therefore, our approach shows a competitive advantage. 

4.4. Analysis and discussion 

LSTM with LIMS data gets poor performance compared with 
MLP on the test set. The reasons may be that LSTM with LIMS 
data ignores operating variables and is based on poor-quality 
data. However, LSTM with LIMS data can roughly predict the 
trend of gasoline yield over time, showing that LIMS data is 
helpful. Furtherly, LSTM with DCS data and LSTM with AVG 
data show great advantages in the prediction of gasoline 
yield. Obviously, it is easier for LSTM structure to find the 
relationship between factors and gasoline yield. 

LSTM with AVG data significantly outperforms LSTM with 
DCS data on PearsonR. It can be seen that it is helpful to 
capture the trend of gasoline yield over time by combining 
LIMS and DCS data. However, RMSE of LSTM with AVG data is 
higher than RMSE of LSTM with DCS data. It is inferred that 
the DCS data with high sampling frequency can provide 
more information for the model. 

ML-LSTM, which uses LIMS data, DCS data with high 
sampling frequency, and LSTM structure, gets the best per
formance. It is obvious that ML-LSTM with different sam
pling frequencies data performs an excellent ability to 
capture the relationship between various factors and gaso
line yield. 

To analyze the effectiveness of ML-LSTM, the hidden 
states of ML-LSTM and LSTM with AVG data on the testing 
set are extracted to calculate PearsonR between each feature 

Table 1 – Performance of all models on the training set and test set.         

Model RMSE PearsonR R2

Train Test Train Test Train Test  

MLP  0.6432  0.7133  0.9012  0.5271  0.7814  0.1653 
LSTM with LIMS data  0.9560  0.8194  0.7432  0.2865  0.5172  -0.1014 
LSTM with DCS data  0.5632  0.6066  0.9161  0.6533  0.8324  0.3964 
LSTM with AVG data  0.6214  0.6236  0.8990  0.6622  0.7960  0.3620 
ML-LSTM  0.5732  0.5851  0.9100  0.7671  0.8264  0.4384   
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in the hidden state and the gasoline yield. The results are 
shown in Fig. 10, where the larger values are represented by 
darker lines, and the smaller values are represented by 
lighter lines. It can be seen that the correlation between ML- 
LSTM hidden state and gasoline yield has more dark lines 
than the correlation between LSTM hidden state and gaso
line yield. 

The histogram to compare the difference is shown in  
Fig. 11, where the horizontal axis and the vertical axis re
present the Pearson correlation coefficient and the number 
of features, respectively. In Fig. 11(a), the correlation is cen
tered on 0. Fig. 11(b) shows a bimodal distribution of corre
lation, with peaks of 0.5 and - 0.5. On the whole, ML-LSTM 
shows a great competitive advantage in feature extraction.  

Fig. 9 – Prediction results of all models on the test set. (a) Prediction result of MLP. (b) Prediction result of LSTM with LIMS 
data. (c) Prediction result of LSTM with DCS data. (d) Prediction result of LSTM with AVG data. (e) Prediction result of 
ML-LSTM. 
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Figs. 10 and 11 demonstrate that ML-LSTM is superior to 
LSTM model in feature extraction. 

5. Conclusions 

According to the characteristics of FCCU, ML-LSTM is pro
posed to predict the gasoline yield in this paper. Firstly, a 
special network structure is considered to align the input 
variables with different collection frequencies in the time 
domain. Secondly, LSTMs with different time scales are 
stacked to extract high-level representations from multi 
variables, and a novel training method is applied to help the 
model to capture the long-term dependencies in the data of 
FCCU. These experiments illustrate that compared with the 
LSTM model, RMSE of ML-LSTM is lower, and the Pearson 
correlation coefficient and R-square of ML-LSTM are higher. 
In addition, the correlation between features extracted by 
our approach and gasoline yield is calculated and analyzed to 
verify the model performance. The further study will focus 

on explaining the impact process of various factors on pro
duct yields in the time domain. 
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